Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yisong Xie is active.

Publication


Featured researches published by Yisong Xie.


Remote Sensing | 2016

Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET

Yan Ma; Zhengqiang Li; Zhaozhou Li; Yisong Xie; Qiaoyan Fu; Donghui Li; Ying Zhang; Hua Xu; Kaitao Li

The 3 km Dark Target (DT) aerosol optical depth (AOD) products, 10 km DT and Deep Blue (DB) AOD products from the Collection 6 (C6) product data of Moderate Resolution Imaging Spectroradiometer (MODIS) are compared with Sun-sky Radiometer Network (SONET) measurements at Song Mountain in central China, where ground-based remote sensing measurements of aerosol properties are still very limited. The seasonal variations of AODs are significant in the Song Mountain region, with higher AODs in spring and summer and lower AODs in autumn and winter. Annual mean AODs (0.55 µm) vary in the range of 0.5–0.7, which indicates particle matter (PM) pollutions in this mountain region. Validation against one-year ground-based measurements shows that AOD retrievals from the MODIS onboard Aqua satellite are better than those from the Terra satellite in Song Mountain. The 3 km and 10 km AODs from DT algorithms are comparable over this region, while the AOD accuracy of DB algorithm is relatively lower. However, the spatial coverage of DB products is higher than that of 10 km DT products. Moreover, the optical and microphysical characteristics of aerosols at Song Mountain are analyzed on the basis of SONET observations. It suggests that coarse-mode aerosol particles dominate in spring, and fine-mode particles dominate in summer. The aerosol property models are also established and compared to aerosol types used by MODIS algorithm.


Journal of Geophysical Research | 2015

Comparison of aerosol properties over Beijing and Kanpur: Optical, physical properties and aerosol component composition retrieved from 12 years ground-based Sun-sky radiometer remote sensing data

Zhengqiang Li; Lei Li; Fengxia Zhang; Donghui Li; Yisong Xie; Hua Xu

Aerosol mixtures composed of coarse and fine particles occur frequently in metropolitan areas in the world, especially in developing countries. Beijing, China, and Kanpur, India, are both in Asian monsoon regions and experience strong aerosol loading because of increased economic activities, vehicles, and urbanization. Observations originating from the Aerosol Robotic Network (AERONET) have played a vital role in the field of aerosol study. In order to understand the variations of aerosol optical, physical properties and component composition over Beijing and Kanpur, we focus on AERONET measurements collected at these two sites from 2002 to 2013 and employ a five-component (including black carbon, BC; mineral dust, DU; brown carbon, BrC; ammonium sulfate like, AS; and aerosol water content, AW) aerosol mixture model to retrieve the aerosol component composition. Particle size distribution, spectral characteristics of single-scattering albedo, and refractive indices of the aerosols over Beijing and Kanpur are found to be distinct and with regular seasonal variations. Correspondingly, aerosol components show distinct temporal characteristics at both sites. In Beijing, BC shows a significant decrease from 2002 to 2013 (especially after 2007) with an average declining rate of 0.69 mg m−2 yr−1. Among the five components, BC and BrC are higher during winter and autumn especially at Beijing, while DU and AS are higher during spring and summer at the two sites. With respect to site differences, BC and BrC are usually higher in Beijing in most of the year, while DU and AS are higher in Kanpur especially from April to June. Moreover, AW is similar and quite comparable at two sites.


Remote Sensing | 2015

Aerosol Optical and Microphysical Properties of Four Typical Sites of SONET in China Based on Remote Sensing Measurements

Yisong Xie; Zhengqiang Li; Donghui Li; Hua Xu; Kaitao Li

The current understanding of columnar aerosol optical and microphysical properties of different regions and seasons in China is insufficient due to the lack of measurements. Aiming to improve descriptions of aerosol models over China, this paper presents a systematic aerosol characterization of different sites based on a newly developed remote sensing network for aerosol observation, the Sun-sky radiometer Observation NETwork (SONET). One year of ground-based solar and sky radiation measurements of four typical sites of SONET (Beijing–urban-industrial site, Zhangye—rural site, Minqin—desert site, Zhoushan–oceanic site) are used to retrieve aerosol properties using similar inversion algorithms with AErosol RObotic NETwork (AERONET), including aerosol optical depth, Angstrom exponent, volume size distribution, complex refractive index, single scattering albedo, and percentage of spherical particles. The retrieved properties among sites and seasons are found to be different in terms of magnitude, spectral dependence, and partition of fine and coarse mode, which can be primarily explained by different aerosol composition and mixing states that closely relate to the local climate, the natural environment, and most importantly, the ubiquitous anthropogenic impacts. For example, large dust particles greatly contribute to the low fine mode fraction in both volume concentration and optical depth for the Minqin site through the entire year, while abundant small particles that mainly come from emission sources dominate the size distribution and light extinction of aerosol in the summer at the Beijing site. The results also show general agreements with other studies on the aerosol properties at each site, however, some unique features are still noticeable, especially at the desert site and oceanic site (e.g., the unusually strong aerosol absorptivity indicated by the large imaginary refractive index and low single scattering albedo at the Minqin and Zhoushan sites), which can be partly attributed to the existence of absorbing particles coming from anthropogenic sources.


Bulletin of the American Meteorological Society | 2017

Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer Observation Network (SONET) Measurements

Zhengqiang Li; H. Xu; K. T. Li; Da-Ning Li; Yisong Xie; Linjie Li; Yulan Zhang; Gu Xf; W. Zhao; Q. J. Tian; R. R. Deng; Xiaoli Su; B. Huang; Yanli Qiao; W. Y. Cui; Y. Hu; C. L. Gong; Y. Q. Wang; X. F. Wang; Jun Wang; W. B. Du; Z. Q. Pan; Z. Z. Li; D. Bu

AbstractAn overview of Sun–Sky Radiometer Observation Network (SONET) measurements in China is presented. Based on observations at 16 distributed SONET sites in China, atmospheric aerosol parameters are acquired via standardization processes of operational measurement, maintenance, calibration, inversion, and quality control implemented since 2010. A climatology study is performed focusing on total columnar atmospheric aerosol characteristics, including optical (aerosol optical depth, AngstrOm exponent, fine-mode fraction, single-scattering albedo), physical (volume particle size distribution), chemical composition (black carbon; brown carbon; fine-mode scattering component, coarse-mode component; and aerosol water), and radiative properties (aerosol radiative forcing and efficiency). Data analyses show that aerosol optical depth is low in the west but high in the east of China. Aerosol composition also shows significant spatial and temporal variations, leading to noticeable diversities in optical and phy...


Advances in Meteorology | 2014

Ground-Based Polarimetric Remote Sensing of Dust Aerosol Properties in Chinese Deserts near Hexi Corridor

Hua Xu; Zhengqiang Li; Donghui Li; Li Li; Xingfeng Chen; Yisong Xie; Kaitao Li; Cheng Chen; Yuhuan Zhang

One-year observation of dust aerosol properties near Hexi Corridor was obtained from polarimetric measurements by ground-based sunphotometer in the county of Minqin in northwestern China from March 2012 to February 2013. We observed an annual mean AOD of at 0.50 μm and Angstrom exponents of 0.1–1.0 fitting a bimode normal distribution centered at 0.18 and 0.50, respectively. The effective radii of fine (0.13–0.17 μm) and coarse (2.49–3.49 μm) modes were found stable at all seasons together with the appearance of a third mode of particle radius at 0.4–1.0 μm when AOD was larger than 0.6. It is noticeable that the real (1.5–1.7) and imaginary (0.0005 to 0.09) parts of complex refractive indices were higher than other studies performed in other desert regions of China, while single scattering albedo was relatively lower (~0.84–0.89) at wavelengths of 0.44, 0.67, 0.87, and 1.02 μm. This is partially due to calcite or hematite in the soil in Minqin or the influence of anthropogenic aerosols containing carbon. Moreover, from our novel polarimetric measurement, the scattering phase function () and degree of linear polarization for incident unpolarized light () of dust aerosols were also obtained within this deserted area.


Remote Sensing | 2017

Retrieval of Aerosol Optical Depth Using the Empirical Orthogonal Functions (EOFs) Based on PARASOL Multi-Angle Intensity Data

Yang Zhang; Zhengqiang Li; Lili Qie; Weizhen Hou; Zhihong Liu; Ying Zhang; Yisong Xie; Xingfeng Chen; Hua Xu

Aerosol optical depth (AOD) is a widely used aerosol optical parameter in atmospheric physics. To obtain this parameter precisely, many institutions plan to launch satellites with multi-angle measurement sensors, but one important step in aerosol retrieval, the estimation of surface reflectance, is still a pressing issue. This paper presents an AOD retrieval method based on the multi-angle intensity data from the Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL) platform using empirical orthogonal functions (EOFs), which can be universally applied to multi-angle observations. The function of EOFs in this study is to estimate surface intensity contributions, associated with aerosol lookup tables (LUTs), so that the retrieval of AOD can be implemented. A comparison of the retrieved AODs for the Beijing, Xianghe, Taihu, and Hongkong_PolyU sites with those from the Aerosol Robotic Network (AERONET) ground-based observations produced high correlation coefficients (r) of 0.892, 0.915, 0.831, and 0.897, respectively, while the corresponding root mean square errors (RMSEs) are 0.095, 0.093, 0.099, and 0.076, respectively.


Remote Sensing | 2017

In-Flight Calibration of GF-1/WFV Visible Channels Using Rayleigh Scattering

Xingfeng Chen; Jin Xing; Li Liu; Zhengqiang Li; Xiaodong Mei; Qiaoyan Fu; Yisong Xie; Bangyu Ge; Kaitao Li; Hua Xu

China is planning to launch more and more optical remote-sensing satellites with high spatial resolution and multistep gains. Field calibration, the current operational method of satellite in-flight radiometric calibration, still does not have enough capacity to meet these demands. Gaofen-1 (GF-1), as the first satellite of the Chinese High-resolution Earth Observation System, has been specially arranged to obtain 22 images over clean ocean areas using the Wide Field Viewing camera. Following this, Rayleigh scattering calibration was carried out for the visible channels with these images after the appropriate data processing steps. To guarantee a high calibration precision, uncertainty was analyzed in advance taking into account ozone, aerosol optical depth (AOD), seawater salinity, chlorophyll concentration, wind speed and solar zenith angle. AOD and wind speed were found to be the biggest error sources, which were also closely coupled to the solar zenith angle. Therefore, the best sample data for Rayleigh scattering calibration were selected at the following solar zenith angle of 19–22° and wind speed of 5–13 m/s to reduce the reflection contributed by the water surface. The total Rayleigh scattering calibration uncertainties of visible bands are 2.44% (blue), 3.86% (green), and 4.63% (red) respectively. Compared with the recent field calibration results, the errors are −1.69% (blue), 1.83% (green), and −0.79% (red). Therefore, the Rayleigh scattering calibration can become an operational in-flight calibration method for the high spatial resolution satellites.


Applied Optics | 2013

Method to intercalibrate sunphotometer constants using an integrating sphere as a light source in the laboratory

Zhengqiang Li; Philippe Goloub; L. Blarel; Benyong Yang; Kaitao Li; Thierry Podvin; Donghui Li; Yisong Xie; Xingfeng Chen; Xingfa Gu; Xiaobing Zheng; Jianjun Li; Maxime Catalfamo

A calibration method is introduced to transfer calibration constants from the reference to secondary sunphotometers using a laboratory integrating sphere as a light source, instead of the traditional transferring approach performed at specific calibration sites based on sunlight. The viewing solid angle and spectral response effects of the photometer are taken into account in the transfer, and thus the method can be applied to different types of sunphotometers widely used in the field of atmospheric observation. A laboratory experiment is performed to illustrate this approach for four types of CIMEL CE318 sunphotometers belonging to the aerosol robotic network (AERONET). The laboratory calibration method shows an average difference of 1.4% from the AERONET operational calibration results, while a detailed error analysis suggests that the uncertainty agrees with the estimation and could be further improved. Using this laboratory calibration approach is expected to avoid weather influences and decrease data interruption due to operationally required periodic calibration operations. It also provides a basis for establishing a network including different sunphotometers for worldwide aerosol measurements, based on a single standard calibration reference.


Scientific Reports | 2018

Aerosol optical, microphysical, chemical and radiative properties of high aerosol load cases over the Arctic based on AERONET measurements

Yisong Xie; Zhengqiang Li; Li Li; Richard Wagener; Ihab Abboud; Kaitao Li; Donghui Li; Ying Zhang; Xingfeng Chen; Hua Xu

Columnar mass concentrations of aerosol components over the Arctic are estimated using microphysical parameters derived from direct sun extinction and sky radiance measurements of Aerosol Robotic Network. Aerosol optical, microphysical, chemical and radiative properties show that Arctic aerosols are dominated by fine mode particles, especially for high aerosol load cases. The average aerosol optical depth (AOD) of the selected Arctic sites in the sampling period is approximately 0.08, with 75% composed of fine mode particles. The fine mode fraction mostly exceeds 0.9 when AOD greater than 0.4. The ammonium sulfate-like component (AS) contributes about 68% of total dry aerosol mass for high-AOD events. The estimated compositions and back trajectories show that the transported aerosol particles from biomass burning events have large amounts of black carbon (BC) and brown carbon, while those from pollution events are characterised by large AS fractions. The instantaneous radiative forcing at the top-of-atmosphere is higher for the more absorbing components, and varies greatly with surface albedo and solar zenith angle. A regression model of columnar composition and radiative forcing within the atmosphere (RFATM) for Arctic aerosol is established, showing that BC dominates a positive RFATM with a high warming efficiency.


Advances in Meteorology | 2017

Improving Daytime Planetary Boundary Layer Height Determination from CALIOP: Validation Based on Ground-Based Lidar Station

Zhao Liu; Augustin Mortier; Zhengqiang Li; Weizhen Hou; Philippe Goloub; Yang Lv; Xingfeng Chen; Donghui Li; Kaitao Li; Yisong Xie

An integrated algorithm by combining the advantages of the wavelet covariance method and the improved maximum variance method was developed to determine the planetary boundary layer height (PBLH) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and an aerosol fraction threshold was applied to the integrated algorithm considering the applicability of the two methods. We compared the CALIOP retrieval with the measurements of PBLH derived from nine years of ground-based Lidar synchronous observations located in Lille, north of France. The results indicate that a good correlation () exists between the PBLHs derived from CALIOP and ground-based Lidar under clear sky conditions. The mean absolute differences of PBLHs are, respectively, of 206 m and 106 m before and after the removal of the aloft aerosol layer. The results under cloudy sky conditions show a lower agreement () in regard of the comparisons performed under clear sky conditions. Besides, the spatial correlation of PBLHs decreases with the increasing spatial distance between CALIOP footprint and Lille observation platform. Based on the above analysis, the PBLHs can be effectively derived by the integrated algorithm under clear sky conditions, while larger mean absolute difference (i.e., 527 m) exists under cloudy sky conditions.

Collaboration


Dive into the Yisong Xie's collaboration.

Top Co-Authors

Avatar

Zhengqiang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Donghui Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hua Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kaitao Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xingfeng Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gu Xf

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge