Yitzhak Katznelson
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yitzhak Katznelson.
Israel Journal of Mathematics | 1992
Jean Bourgain; Jeff Kahn; Gil Kalai; Yitzhak Katznelson; Nathan Linial
AbstractLetX be a probability space and letf: Xn → {0, 1} be a measurable map. Define the influence of thek-th variable onf, denoted byIf(k), as follows: Foru=(u1,u2,…,un−1) ∈Xn−1 consider the setlk(u)={(u1,u2,...,uk−1,t,uk,…,un−1):t ∈X}.
Israel Journal of Mathematics | 1989
Harry Furstenberg; Yitzhak Katznelson
Publications Mathématiques de l'IHÉS | 1989
Jean Bourgain; Harry Furstenberg; Yitzhak Katznelson; Donald S. Ornstein
I_f (k) = \Pr (u \in X^{n - 1} :f is not constant on l_k (u)).
Archive | 1981
Yitzhak Katznelson; Benjamin Weiss
Israel Journal of Mathematics | 1970
K. deLeeuw; Yitzhak Katznelson
More generally, forS a subset of [n]={1,...,n} let the influence ofS onf, denoted byIf(S), be the probability that assigning values to the variables not inS at random, the value off is undetermined. Theorem 1:There is an absolute constant c1so that for every function f: Xn → {0, 1},with Pr(f−1(1))=p≤1/2,there is a variable k so that
Israel Journal of Mathematics | 1992
Steven Kalikow; Yitzhak Katznelson; Benjamin Weiss
Israel Journal of Mathematics | 1964
Karel de Leeuw; Yitzhak Katznelson
I_f (k) \geqslant c_1 p\frac{{\log n}}{n}.
Journal D Analyse Mathematique | 1993
Yitzhak Katznelson; Donald S. Ornstein
Israel Journal of Mathematics | 1965
I. I. Hirschman; Yitzhak Katznelson
Theorem 2:For every f: Xn → {0, 1},with Prob(f=1)=1/2, and every ε>0,there is S ⊂ [n], |S|=c2(ε)n/logn so that If (S)≥1−ε.These extend previous results by Kahn, Kalai and Linial for Boolean functions, i.e., the caseX={0, 1}.
Archive | 1968
Yitzhak Katznelson
We prove a theorem about idempotents in compact semigroups. This theorem gives a new proof of van der Waerden’s theorem on arithmetic progressions as well as the Hales-Jewett theorem. It also gives an infinitary version of the Hales-Jewett theorem which includes results of T. J. Carlson and S. G. Simpson.