Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiwen Zhu is active.

Publication


Featured researches published by Yiwen Zhu.


Nature | 2010

Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice

Axel Visel; Yiwen Zhu; Dalit May; Veena Afzal; Elaine Gong; Catia Attanasio; Matthew J. Blow; Jonathan C. Cohen; Edward M. Rubin; Len A. Pennacchio

Sequence polymorphisms in a 58-kilobase (kb) interval on chromosome 9p21 confer a markedly increased risk of coronary artery disease (CAD), the leading cause of death worldwide. The variants have a substantial effect on the epidemiology of CAD and other life-threatening vascular conditions because nearly one-quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein-coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70-kb non-coding interval on mouse chromosome 4 affects cardiac expression of neighbouring genes, as well as proliferation properties of vascular cells. Chr4Δ70kb/Δ70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the non-coding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4Δ70kb/Δ70kb mice, indicating that distant-acting gene regulatory functions are located in the non-coding CAD risk interval. Allele-specific expression of Cdkn2b transcripts in heterozygous mice showed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4Δ70kb/Δ70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval has a pivotal role in regulation of cardiac Cdkn2a/b expression, and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.


Science | 2007

Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer

Rotem Sorek; Yiwen Zhu; Christopher J. Creevey; M. Pilar Francino; Peer Bork; Edward M. Rubin

Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to that of another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into Escherichia coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Our data suggest that toxicity to the host inhibited transfer regardless of the species of origin and that increased gene dosage and associated increased expression may be a predominant cause for transfer failure. Although these experimental studies examined transfer solely into E. coli, a computational analysis of gene-transfer rates across available bacterial and archaeal genomes supports that the barriers observed in our study are general across the tree of life.


Nature | 2004

Megabase deletions of gene deserts result in viable mice

Marcelo A. Nobrega; Yiwen Zhu; Ingrid Plajzer-Frick; Veena Afzal; Edward M. Rubin

The functional importance of the roughly 98% of mammalian genomes not corresponding to protein coding sequences remains largely undetermined. Here we show that some large-scale deletions of the non-coding DNA referred to as gene deserts can be well tolerated by an organism. We deleted two large non-coding intervals, 1,511 kilobases and 845 kilobases in length, from the mouse genome. Viable mice homozygous for the deletions were generated and were indistinguishable from wild-type littermates with regard to morphology, reproductive fitness, growth, longevity and a variety of parameters assaying general homeostasis. Further detailed analysis of the expression of multiple genes bracketing the deletions revealed only minor expression differences in homozygous deletion and wild-type mice. Together, the two deleted segments harbour 1,243 non-coding sequences conserved between humans and rodents (more than 100 base pairs, 70% identity). Some of the deleted sequences might encode for functions unidentified in our screen; nonetheless, these studies further support the existence of potentially ‘disposable DNA’ in the genomes of mammals.


Science | 2013

Fine Tuning of Craniofacial Morphology by Distant-Acting Enhancers

Catia Attanasio; Alex S. Nord; Yiwen Zhu; Matthew J. Blow; Zirong Li; Denise K. Liberton; Harris Morrison; Ingrid Plajzer-Frick; Amy Holt; Roya Hosseini; Sengthavy Phouanenavong; Jennifer A. Akiyama; Malak Shoukry; Veena Afzal; Edward M. Rubin; David Fitzpatrick; Bing Ren; Benedikt Hallgrímsson; Len A. Pennacchio; Axel Visel

Introduction The shape of the face is one of the most distinctive features among humans, and differences in facial morphology have substantial implications in areas such as social interaction, psychology, forensics, and clinical genetics. Craniofacial shape is highly heritable, including the normal spectrum of morphological variation as well as susceptibility to major craniofacial birth defects. In this study, we explored the role of transcriptional enhancers in the development of the craniofacial complex. Our study is based on the rationale that such enhancers, which can be hundreds of kilobases away from their target genes, regulate the spatial patterns, levels, and timing of gene expression in normal development. Craniofacial developmental enhancers contribute to craniofacial morphology. We identified distant-acting transcriptional enhancers active in the developing craniofacial complex and studied their activity patterns in detail in transgenic mice (left). Selected enhancers were deleted from the genome in mice in order to examine their role in modulating craniofacial morphology, which revealed subtle but significant effects of enhancers on the shape of the face and skull (right). Methods To identify distant-acting enhancers active during craniofacial development, we used chromatin immunoprecipitation on embryonic mouse face tissue followed by sequencing to identify noncoding genome regions bound by the enhancer-associated p300 protein. We used LacZ reporter assays in transgenic mice and optical projection tomography (OPT) to determine three-dimensional expression patterns of a subset of these candidate enhancers. Last, we deleted three of the craniofacial enhancers from the mouse genome to assess their effect on gene expression and craniofacial morphology during development. Results We identified more than 4000 candidate enhancer sequences predicted to be active in the developing craniofacial complex. The majority of these sequences are at least partially conserved between humans and mice, and many are located in chromosomal regions associated with normal facial morphology or craniofacial birth defects. Characterization of more than 200 candidate enhancer sequences in transgenic mice revealed a remarkable spatial complexity of in vivo expression patterns. Targeted deletions of three craniofacial enhancers near genes with known roles in craniofacial development resulted in changes of expression of those genes as well as quantitatively subtle but definable alterations of craniofacial shape. Discussion Our analysis identifies enhancers that fine tune expression of genes during craniofacial development in mice. These results support that variation in the sequence or copy number of craniofacial enhancers may contribute to the spectrum of facial variation we find in human populations. Because many craniofacial enhancers are located in genome regions associated with craniofacial birth defects, such as clefts of the lip and palate, our results also offer a starting point for exploring the contribution of noncoding sequences to these disorders. No Two Faces Are Alike Gene disruptions can cause severe dysmorphologies like cleft palate, but what causes the subtle shifts in facial morphology that make each face unique? Studying mice, Attanasio et al. (1241006) identified over 4000 candidate genetic enhancers around genes driving craniofacial development. To avoid the challenge of recognizing individual mouse faces, optical projection tomography was used to link changes in facial morphology with alterations in the function of specific enhancers. Targeted deletion of individual craniofacial enhancers from the mouse genome sculpts facial shapes. The shape of the human face and skull is largely genetically determined. However, the genomic basis of craniofacial morphology is incompletely understood and hypothesized to involve protein-coding genes, as well as gene regulatory sequences. We used a combination of epigenomic profiling, in vivo characterization of candidate enhancer sequences in transgenic mice, and targeted deletion experiments to examine the role of distant-acting enhancers in craniofacial development. We identified complex regulatory landscapes consisting of enhancers that drive spatially complex developmental expression patterns. Analysis of mouse lines in which individual craniofacial enhancers had been deleted revealed significant alterations of craniofacial shape, demonstrating the functional importance of enhancers in defining face and skull morphology. These results demonstrate that enhancers are involved in craniofacial development and suggest that enhancer sequence variation contributes to the diversity of human facial morphology.


Nature Methods | 2014

Function-based identification of mammalian enhancers using site-specific integration

Diane E. Dickel; Yiwen Zhu; Alex S. Nord; John N. Wylie; Jennifer A. Akiyama; Veena Afzal; Ingrid Plajzer-Frick; Aileen M. Kirkpatrick; Berthold Göttgens; Benoit G. Bruneau; Axel Visel; Len A. Pennacchio

The accurate and comprehensive identification of functional regulatory sequences in mammalian genomes remains a major challenge. Here we describe site-specific integration fluorescence-activated cell sorting followed by sequencing (SIF-seq), an unbiased, medium-throughput functional assay for the discovery of distant-acting enhancers. Targeted single-copy genomic integration into pluripotent cells, reporter assays and flow cytometry are coupled with high-throughput DNA sequencing to enable parallel screening of large numbers of DNA sequences. By functionally interrogating >500 kilobases (kb) of mouse and human sequence in mouse embryonic stem cells for enhancer activity we identified enhancers at pluripotency loci including NANOG. In in vitro–differentiated cardiomyocytes and neural progenitor cells, we identified cardiac enhancers and neuronal enhancers, respectively. SIF-seq is a powerful and flexible method for de novo functional identification of mammalian enhancers in a potentially wide variety of cell types.


Genome Research | 2012

A vast collection of microbial genes that are toxic to bacteria

Aya Kimelman; Asaf Levy; Hila Sberro; Shahar Kidron; Azita Leavitt; Gil Amitai; Deborah R. Yoder-Himes; Omri Wurtzel; Yiwen Zhu; Edward M. Rubin; Rotem Sorek

In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes, we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes, our assays revealed novel toxins and restriction enzymes, and new classes of small, non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short, toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator DnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.


Nature Communications | 2012

Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate

W. S. Lee; Yi-De Chuang; R. G. Moore; Yiwen Zhu; L. Patthey; M. Trigo; D. H. Lu; Patrick S. Kirchmann; O. Krupin; M. Yi; M. C. Langner; Nils Huse; Y. Chen; Shuyun Zhou; G. Coslovich; Bernhard Huber; David A. Reis; Robert A. Kaindl; Robert W. Schoenlein; D. Doering; Peter Denes; W. F. Schlotter; J. J. Turner; S. L. Johnson; Michael Först; T. Sasagawa; Y. F. Kung; A. P. Sorini; A. F. Kemper; Brian Moritz

The dynamics of an order parameters amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La(1.75)Sr(0.25)NiO(4) to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameters amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phases importance in ordering phenomena of quantum matter.


Genome Research | 2014

Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis

Catia Attanasio; Alex S. Nord; Yiwen Zhu; Matthew J. Blow; Simon C. Biddie; Eric M. Mendenhall; Jesse R. Dixon; Crystal Wright; Roya Hosseini; Jennifer A. Akiyama; Amy Holt; Ingrid Plajzer-Frick; Malak Shoukry; Veena Afzal; Bing Ren; Bradley E. Bernstein; Edward M. Rubin; Axel Visel; Len A. Pennacchio

The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.


Journal of Biological Chemistry | 2003

Targeted Replacement of Mouse Apolipoprotein A-I with Human ApoA-I or the Mutant ApoA-IMilano EVIDENCE OF APOA-IM IMPAIRED HEPATIC SECRETION

Cinzia Parolini; Giulia Chiesa; Yiwen Zhu; Trudy M. Forte; Silvia Caligari; Elisabetta Gianazza; Maria Grazia Sacco; Cesare R. Sirtori; Edward M. Rubin

Despite a pro-atherogenic profile, individuals carrying the molecular variant (R173C) of apolipoprotein (apo)A-I, named apoA-IMilano (apoA-IM), appear to be at reduced risk for cardiovascular disease. To develop anin vivo system to explore, in a controlled manner, the effects of apoA-IM on lipid metabolism, we have used the gene targeting technology, or “gene knock-in” (gene k-in), to replace the murine apoA-I gene with either human apoA-I or apoA-IM genes in embryonic stem cells. As in human carriers, mice expressing apoA-IM (A-IM k-in) are characterized by low concentrations of the human apolipoprotein and reduced high density lipoprotein cholesterol levels, compared with A-I k-in animals. The aim of the present study was to investigate the basic mechanisms of hypoalphalipoproteinemia associated with the apoA-IM mutation. ApoA-I and apoA-IM mRNA expression, as assessed by Northern blot analysis and quantitative real time reverse transcription-PCR, did not exhibit significant differences in either liver or intestine. Moreover, human apolipoprotein synthesis rates were similar in the k-in lines. When the secretion rate of the human apolipoproteins was assessed in cultured hepatocytes from the mouse lines, secretion from apoA-IM-expressing cells was markedly reduced (42% for A-IM k-in and 36% for A-I/A-IM k-in mice) as compared with that of A-I k-in hepatocytes. These results provide the first evidence that the hypoalphalipoproteinemia in apoA-IMhuman carriers may be partially explained by impaired apoA-IM secretion.


Nature | 2018

Enhancer redundancy provides phenotypic robustness in mammalian development

Marco Osterwalder; Iros Barozzi; Virginie Tissières; Yoko Fukuda-Yuzawa; Brandon J. Mannion; Sarah Y. Afzal; E. A. Lee; Yiwen Zhu; Ingrid Plajzer-Frick; Catherine S. Pickle; Momoe Kato; Tyler H. Garvin; Quan T. Pham; Anne N. Harrington; Jennifer A. Akiyama; Veena Afzal; Javier Lopez-Rios; Diane E. Dickel; Axel Visel; Len A. Pennacchio

Distant-acting tissue-specific enhancers, which regulate gene expression, vastly outnumber protein-coding genes in mammalian genomes, but the functional importance of this regulatory complexity remains unclear. Here we show that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers. We used genome editing to create 23 mouse deletion lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct loci required for limb development. Unexpectedly, none of the ten deletions of individual enhancers caused noticeable changes in limb morphology. By contrast, the removal of pairs of limb enhancers near the same gene resulted in discernible phenotypes, indicating that enhancers function redundantly in establishing normal morphology. In a genetic background sensitized by reduced baseline expression of the target gene, even single enhancer deletions caused limb abnormalities, suggesting that functional redundancy is conferred by additive effects of enhancers on gene expression levels. A genome-wide analysis integrating epigenomic and transcriptomic data from 29 developmental mouse tissues revealed that mammalian genes are very commonly associated with multiple enhancers that have similar spatiotemporal activity. Systematic exploration of three representative developmental structures (limb, brain and heart) uncovered more than one thousand cases in which five or more enhancers with redundant activity patterns were found near the same gene. Together, our data indicate that enhancer redundancy is a remarkably widespread feature of mammalian genomes that provides an effective regulatory buffer to prevent deleterious phenotypic consequences upon the loss of individual enhancers.

Collaboration


Dive into the Yiwen Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veena Afzal

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Len A. Pennacchio

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert W. Schoenlein

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ingrid Plajzer-Frick

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Axel Visel

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yi-De Chuang

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. Akiyama

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Diane E. Dickel

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. C. Langner

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge