Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yixue Gu is active.

Publication


Featured researches published by Yixue Gu.


Cellular Signalling | 2014

SET-mediated NDRG1 inhibition is involved in acquisition of epithelial-to-mesenchymal transition phenotype and cisplatin resistance in human lung cancer cell

Hao Liu; Yixue Gu; Jiang Yin; Guopei Zheng; Chenkun Wang; Zhijie Zhang; Min Deng; Jifang Liu; Xiaoting Jia; Zhimin He

Development of resistance to therapy continues to be a serious clinical problem in lung cancer management. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) have been shown to play roles in resistance to chemotherapy. Here, we utilized a proteomics-based method and identified a significant downregulation of the metastasis suppressor NDRG1 in drug resistant lung cancer cells. We showed that downregulation of DNRG1 constitutes a mechanism for acquisition of EMT phenotype and endows lung cancer cells with an increased resistance to cisplatin. We also identified a signal cascade, namely, SET--| PP2A--| c-myc--| NDRG1, in which upregulation of SET is critical for inhibition of NDRG1. We also found that blockade of SET (or reactivation of PP2A) by FTY720 reverted EMT, restored drug sensitivity, and inhibited invasiveness and growth of lung tumor xenografts. Together, our results indicated a functional link between SET-mediated NDRG1 regulation and acquisition of EMT phenotype and drug resistance, and provided an evidence that blockade of SET-driven EMT can overcome drug resistance and inhibit tumor progression.


Molecular Cancer | 2015

ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH

Guopei Zheng; Cong Peng; Xiaoting Jia; Yixue Gu; Zhijie Zhang; Yingen Deng; Chengkun Wang; Nan Li; Jiang Yin; Xiaorong Liu; Minying Lu; Hailin Tang; Zhimin He

BackgroundChemoresistance is a major obstacle in successfully treating cancers, and the mechanisms responsible for drug resistance are still far from understood. Carbonic anhydrase 9 (CA9) has been shown to be upregulated in the drug-resistant tongue cancer cell line Tca8113/PYM and to be associated with drug resistance. However, the mechanisms regulating CA9 expression and its role in drug resistance remain unclear.MethodsBioinformatic and experimental analysis involving ChIP and luciferase reporter assays were used to validate Zinc finger E-box-binding homeobox 1 (ZEB1) as a transcriptional regulator of CA9. Gene expression and protein levels were evaluated by quantitative RT-PCR and western blotting, respectively. Sensitivity to chemotherapy was examined using the MTS assay and Hoechst staining and analysis caspase-3 activity to evaluate changes in apoptosis. Intracellular pH (pHi) was measured using fluorescent pH-indicator BCECF-AM. Protein expression in patient tissue samples was examined by immunohistochemistry and survival of tongue cancer patients from which these samples were derived was also analyzed.ResultsZEB1 bound to the promoter of CA9 to positively regulate CA9 expression in tongue cancer cells. Knockdown of CA9 using short interfering RNA (siRNA) abolished the chemoresistance resulting from ZEB1 overexpression in Tca8113 and SCC-25 cells, and CA9 overexpression attenuated chemosensitivity induced by ZEB1 knockdown in Tca8113/PYM cells. CA9 knockdown also prevented maintenance of pHi mediated by overexpression of ZEB1 in Tca8113 and SCC-25 cells following chemotherapy, associated with increased apoptosis and caspase-3 activation. Conversely, ectopic expression of CA9 suppressed decrease in pHi mediated by ZEB1 knockdown in Tca8113/PYM cells following chemotherapy, accompanied by decreased apoptosis and caspase-3 activation. Importantly, a positive correlation was observed between ZEB1 and CA9 protein expression in tongue cancer tissues, and expression of these proteins associated with a poor prognosis for patients.ConclusionOur finding that tumor cells regulate pHi in response to chemotherapy provides new insights into mechanisms of drug resistance during cancer treatment. Identification of the ZEB1–CA9 signaling axis as a biomarker of poor prognosis in tongue cancer will be valuable in future development of therapeutic strategies aimed at improving treatment efficacy, especially in terms of drug resistance associated with this disease.


Anti-Cancer Drugs | 2014

FOXO3a mediates the cytotoxic effects of cisplatin in lung cancer cells.

Hao Liu; Jiang Yin; Chengkun Wang; Yixue Gu; Min Deng; Zhimin He

Cisplatin is one of the major chemotherapeutic agents used against different human cancers. A better understanding of the downstream cellular targets of cisplatin will provide information on its mechanism of action. FOXO3a is a member of the FOXO transcription factor family, which modulates the expression of genes involved in cell cycle arrest, apoptosis, and other cellular processes. In this study, we have investigated the effects of cisplatin in a panel of lung cancer cell lines. The results showed that cisplatin inhibited the proliferation of these lung cancer cell lines by inhibiting the PI3K/AKT pathway, with evidence of decreasing phosphorylation of PI3K and AKT under cisplatin treatment, and constitutively activating AKT1 could reduce cisplatin-induced cell apoptosis. More importantly, cisplatin significantly inhibited FOXO3a phosphorylation (at Thr32, AKT phosphorylation site) and induced FOXO3a nuclear accumulation, which in turn increased the expression of FOXO3a-dependent apoptotic protein Bim. Knockdown of FOXO3a expression using small interfering RNA attenuated cisplatin-induced apoptosis. Furthermore, activation of FOXO3a induced cell apoptosis irrespective of p53 status, whereas p53 may act as FOXO3a downstream molecules involved in cisplatin-induced cell apoptosis. Together, our findings suggested that FOXO3a is a relevant mediator of the cytotoxic effects of cisplatin in lung cancer cells.


Molecular and Cellular Biochemistry | 2015

TCRP1 contributes to cisplatin resistance by preventing Pol β degradation in lung cancer cells

Xiaorong Liu; Chengkun Wang; Yixue Gu; Zhijie Zhang; Guopei Zheng; Zhimin He

Cisplatin (DDP) is the first-line chemotherapy drug widely used for the treatment of lung cancer patients, whereas the majority of cancer patients will eventually show resistance to DDP. The mechanisms responsible for DDP resistance are not fully understood. Tongue cancer resistance-associated protein 1 (TCRP1) gene was recently cloned and reported to specially mediate DDP resistance in human oral squamous cell carcinoma (OSCC) cells. However, the mechanisms of TCRP1-mediated DDP resistance are far from clear, and whether TCRP1 participates in DDP resistance in lung cancer cells remains unknown. Here, we show that TCRP1 contributes to DDP resistance in lung cancer cells. Knockdown of TCRP1 sensitizes the cells to DDP and increases the DDP-induced DNA damage. We have identified that Pol β is associated with DDP resistance, and Pol β knockdown delays the repair of DDP-induced DNA damage in A549/DDP cells. We find TCRP1 interacts with Pol β in lung cancer cells. Moreover, TCRP1 knockdown decreases the level of Pol β and increases the level of its ubiquitination. These results suggest that TCRP1 contributes to DDP resistance through the prevention of Pol β degradation in lung cancer cells. These findings provide new insights into chemoresistance and may contribute to prevention and reversal of DDP resistance in treatment of lung cancer in the future.


Journal of Experimental & Clinical Cancer Research | 2017

Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells

Xiaomin Feng; Hao Liu; Zhijie Zhang; Yixue Gu; Huisi Qiu; Zhimin He

BackgroundDevelopment of resistance to therapy continues to be a serious clinical problem in lung cancer management. We previously identified that Annexin A2 is significantly up-regulated in cisplatin-resistant non-small cell lung cancer (NSCLC) A549/DDP cells. However, the exact function and molecular mechanism of Annexin A2 in cisplatin resistance of NSCLCs has not been determined.MethodsWestern blot and qRT-PCR were performed to analyze the protein and mRNA level of indicated molecules, respectively. Immunohistochemistry was performed to analyze the expression of Annexin A2 in NSCLC tissue samples. MTS assay, Colony formation assays, AnnexinV/PI apoptosis assay, Luciferase Reporter Assay, Chromatin-immunoprecipitation, and nude mice xenograft assay were used to visualize the function of Annexin A2 on cisplatin resistance.ResultsOur results demonstrated that knockdown of Annexin A2 increased cisplatin sensitivity of cisplatin-resistant A549/DDP cells both in vitro and in vivo, whereas overexpression of Annexin A2 increased cisplatin resistance of A549, H460 and H1650 cells. Moreover, we found that Annexin A2 enhanced cisplatin resistance via inhibition of cisplatin-induced cell apoptosis. Our studies showed that Annexin A2 suppressed the expression of p53 through activation of JNK/c-Jun signaling, which in turn resulted in a decrease in the expression of p53-regulated apoptotic genes p21, GADD45 and BAX, as well as p53-dependent cell apoptosis. Furthermore, we found that in NSCLC cases that Annexin A2 is highly expressed; it is positively correlated with a poor prognosis, as well as correlated with short disease-free survival for patients who received chemotherapy after surgery.ConclusionsThese data suggested that Annexin A2 induces cisplatin resistance of NSCLCs via regulation of JNK/c-Jun/p53 signaling, and provided an evidence that blockade of Annexin A2 could serve as a novel therapeutic approach for overcoming drug resistance in NSCLCs.


Journal of Experimental & Clinical Cancer Research | 2017

Epigenetic silencing of miR-493 increases the resistance to cisplatin in lung cancer by targeting tongue cancer resistance-related protein 1(TCRP1)

Yixue Gu; Zhijie Zhang; Jiang Yin; Jiahui Ye; Yin Song; Hao Liu; Yan Xiong; Minying Lu; Guopei Zheng; Zhimin He

BackgroundThe potential mechanisms regarding how methylation of microRNA(miRNA) CpG Island could regulate cancer cell chemo-resistance remains unclear. This study aims to explore the epigenetic dysregulation mechanism of miRNA-493 and the ability to modulate lung cancer cell chemotherapy resistance.MethodsReal-time quantitative PCR (qRT-PCR) and In situ hybridization (ISH) were used to analyze the expression of miR-493 in lung cancer cell lines and tumor tissue, respectively. Bisulfite sequencing PCR (BSP) was used to exam the promoter CpG Island of miR-493. The effect of miR-493 on chemosensitivity was evaluated by cell viability assays, apoptosis assays and in vivo experiment. The DNA damage was measured by γ-H2AX immunofluorescence. Luciferase reporter assay was used to assess the target genes of miR-493. Expression of target proteins and downstream molecules were analyzed by Western blot.ResultsmiR-493 is silenced in resistant lung cancer cell due to the aberrant DNA methylation. Enforced expression of miR-493 in lung cancer cells promotes chemotherapy sensitivity to cisplatin through impairing the DNA damage repair and increasing the cells apoptosis in vitro and in vivo. Furthermore, we identify that TCRP1 is a direct functional target of miR-493. Ectopic expression of TCRP1 attenuated increased apoptosis in miR-493-overexpressing lung cancer cells upon cisplatin treatment. Meanwhile, miR-493 level is negatively correlated with TCRP1 expression in lung cancer patients and TCRP1 expression were correlated with poor survival.Conclusion sOur results highlight that hyper-methylation of miR-493CpG island might play important roles in the development of lung cancer chemo-resistance by targeting TCRP1, which might be used as a potential therapeutic target in preventing the chemo-resistance of lung cancer.


Journal of Molecular Medicine | 2016

MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer

Guopei Zheng; Nan Li; Xiaoting Jia; Cong Peng; Liyun Luo; Yingen Deng; Jiang Yin; Ying Song; Hao Liu; Minying Lu; Zhijie Zhang; Yixue Gu; Zhimin He

Chemo-resistance is still a major obstacle in successful cancer treatment. Previously, we found that miR-21 (miR-21-5p) was upregulated in drug-resistant tongue cancer (TC) cell line Tca8113/PYM. However, the mechanisms for miR-21 upregulation and its role in chemo-resistance in TC remain unclear. Here, we demonstrated that functional inhibition of miR-21 sensitized TC cells to chemotherapy. In agreement, overexpressed miR-21 enhanced chemo-resistance in TC cells. We found that miR-21 directly targeted CADM1 expression, which was downregulated in drug-resistant TC cells. Restored CADM1 expression sensitized TC cells to chemotherapy, but CADM1 knockdown induced chemo-resistance. Mechanically, CADM1 interacted with BMI1 to inhibit its nuclear translocation. Moreover, MYCN which was overexpressed in drug-resistant TC cells directly bound to the miR-21 promoter to upregulated miR-21 expression in TC cells. Importantly, the expression levels of miR-21 and CADM1 negatively correlated, but MYCN and miR-21 positively correlated in TC tissues. High levels of miR-21 and MYCN and low level of CADM1 were associated with poor prognosis in TC patients. In conclusion, our study suggests an important role of the MYCN/miR-21/CADM1 axis in chemo-resistance in TC patients and may lead to promising prognostic biomarkers and novel treatment strategies to improve the chemotherapeutic efficacy for TC patients.Key messagesMiR-21 enhances chemo-resistance via targeting CADM1 in tongue cancer cells.CADM1 sensitizes tongue cancer cells to chemotherapy.CADM1 interacts with BMI1 to inhibit its nuclear translocation.MYCN transcriptionally regulates miR-21 expression.Dysregulated MYCN/miR-21/CADM1 axis associates with poor prognosis in TC patients.


Oncology Letters | 2017

TCRP1 expression is associated with platinum sensitivity in human lung and ovarian cancer cells

Xiaorong Liu; Meiling Feng; Guopei Zheng; Yixue Gu; Chengkun Wang; Zhimin He

Platinum-based drugs, including cisplatin (DDP) and oxaliplatin (L-OHP), are among the most potent chemotherapy drugs, and are widely utilized for the treatment of human lung and ovarian cancer. However, certain patients do not respond to platinum-based agents, and even those who initially benefit from the treatment will eventually exhibit resistance to these drugs. Although certain factors have been investigated for their potential to predict platinum resistance, more effective predictors for the improved management of patients with lung and ovarian cancer are required. Tongue cancer resistance-associated protein 1 (TCRP1) is a newly identified gene, which was cloned from a multi-drug resistant cell line of tongue cancer. Previous data has shown that TCRP1 is able to mediate DDP resistance in human oral squamous cell carcinoma cells. However, the contribution of TCRP1 to the resistance of platinum agents in human lung and ovarian cancer cells remains to be elucidated. Our previous study showed that TCRP1 expression levels in samples of lung and ovarian cancer were significantly increased compared with normal controls. In the present study, it was demonstrated that TCRP1 contributed to the resistance to DDP and L-OHP in human lung and ovarian cancer cells. Knockdown of TCRP1 resensitized the cells to the platinum-based agents. The present study identified a positive correlation between TCRP1 expression and primary resistance to DDP and L-OHP in lung cancer cells. In addition, it was observed that cells treated with nuclear factor (NF)-κB inhibitor BAY 11-7082 displayed increased sensitivity to DDP and L-OHP. The results of the present study suggested that TCRP1 may be associated with resistance to DDP and L-OHP in lung and ovarian cancer cells, and the Akt/NF-κB signaling pathway may be involved in the functioning of TCRP1. These findings identify TCRP1 as a potential predictor of platinum resistance in the treatment of lung and ovarian cancer.


Clinical Cancer Research | 2017

HSP27-Mediated Extracellular and Intracellular Signaling Pathways Synergistically Confer Chemoresistance in Squamous Cell Carcinoma of Tongue

Guopei Zheng; Zhijie Zhang; Hao Liu; Yan Xiong; Liyun Luo; Xiaoting Jia; Cong Peng; Qiong Zhang; Nan Li; Yixue Gu; Minying Lu; Ying Song; Hao Pan; Jinbao Liu; Wanqing Liu; Zhimin He

Purpose: Squamous cell carcinoma of tongue (SCCT) is the most common type of oral cavity carcinoma. Chemoresistance in SCCT is common, and the underlying mechanism remains largely unknown. We aimed to identify key molecules and signaling pathways mediating chemoresistance in SCCT. Experimental Design: Using a proteomic approach, we found that the HSP27 was a potential mediator for chemoresistance in SCCT cells. To further validate this role of HSP27, we performed various mechanistic studies using in vitro and in vivo models as well as serum and tissue samples from SCCT patients. Results: The HSP27 protein level was significantly increased in the multidrug-resistant SCCT cells and cell culture medium. Both HSP27 knockdown and anti-HSP27 antibody treatment reversed chemoresistance. Inversely, both HSP27 overexpression and recombinant human HSP27 protein treatment enhanced chemoresistance. Moreover, chemotherapy significantly induced HSP27 protein expression in both SCCT cells and their culture medium, as well as in tumor tissues and serum of SCCT patients. HSP27 overexpression predicts a poor outcome for SCCT patients receiving chemotherapy. Mechanically, extracellular HSP27 binds to TLR5 and then activates NF-κB signaling to maintain SCCT cell survival. TLR5 knockdown or restored IκBα protein level disrupts extracellular HSP27-induced NF-κB transactivation and chemoresistance. Moreover, intracellular HSP27 binds to BAX and BIM to repress their translocation to mitochondrion and subsequent cytochrome C release upon chemotherapy, resulting in inhibition of the mitochondrial apoptotic pathway. Conclusions: HSP27 plays a pivotal role in chemoresistance of SCCT cells via a synergistic extracellular and intracellular signaling. HSP27 may represent a potential biomarker and therapeutic target for precision SCCT treatment. Clin Cancer Res; 24(5); 1163–75. ©2017 AACR.


Oncotarget | 2015

Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer

Hao Liu; Yixue Gu; Hong-Sheng Wang; Jiang Yin; Guopei Zheng; Zhijie Zhang; Minyin Lu; Chenkun Wang; Zhimin He

Collaboration


Dive into the Yixue Gu's collaboration.

Top Co-Authors

Avatar

Zhimin He

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Guopei Zheng

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhijie Zhang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Hao Liu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiang Yin

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaoting Jia

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Chengkun Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Minying Lu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Nan Li

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Cong Peng

Guangzhou Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge