Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiyan He is active.

Publication


Featured researches published by Yiyan He.


Journal of Materials Chemistry B | 2014

Influence of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene delivery

Dong Yue; Gang Cheng; Yiyan He; Qian Jiang; Xiaojun Cai; Zhongwei Gu

Bioreducible polymers have appeared as ideal gene delivery vectors due to the high stability in extracellular fluids and rapid DNA unpacking in an intracellular reducing environment, as well as decreased cytotoxicity. Disulfide bonds have long been regarded as the only golden standard for this design. Recently, diselenide bonds have emerged as a new reduction-sensitive linkage. However, its reduction sensitivity has not been systematically reported. The primary aim of this study is to compare its reduction sensitivity with the golden standard disulfide bonds. Bioreduction-triggered polymer degradation revealed that diselenide bonds are more stable than disulfide bonds with a lower redox potential (i.e. 10 μM GSH). The changes in DNA binding ability, particle size, zeta potential, and morphology all demonstrated that diselenide bonds have similar reduction sensitivity as disulfide bonds, but it could be only cleaved at a tumor-relevant glutathione concentration (i.e. 10 mM GSH). Förster resonance energy transfer (FRET) spectra suggested that diselenide bond conjugated OEI800 (OEI-SeSex) complexes could not only maintain high stability under 10 μM GSH conditions, but could also timely release DNA under 10 mM GSH conditions. Cell viability assay results showed that OEI-SeSex has a similar cell viability profile as disulfide bond conjugated OEI800 (OEI-SSx), which is much less toxic than PEI25k. Biological efficacy assessment indicated comparable or even outweigh transfection efficiency of OEI-SeSex with OEI-SSx and PEI25k. These results suggested that the unique properties of diselenide bonds have enabled a versatile design of multifunctional bioreducible polymers for in vivo gene delivery.


Theranostics | 2016

Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging

Yunkun Li; Yachao Li; Xiao Zhang; Xianghui Xu; Zhijun Zhang; Cheng Hu; Yiyan He; Zhongwei Gu

Recently, self-assembling small dendrimers into supramolecular dendritic systems offers an alternative strategy to develop multifunctional nanoplatforms for biomedical applications. We herein report a dual-responsive supramolecular PEGylated dendritic system for efficient platinum-based drug delivery and near-infrared (NIR) tracking. With a refined molecular/supramolecular engineering, supramolecular dendritic systems were stabilized by bioreducible disulfide bonds and endowed with NIR fluorescence probes, and PEGylated platinum derivatives coordinated onto the abundant peripheral groups of supramolecular dendritic templates to generate pH/redox dual-responsive theranostic supramolecular PEGylated dendritic systems (TSPDSs). TSPDSs markedly improved the pharmacokinetics and biodistribution of platinum-based drugs, owing to their stable nanostructures and PEGylated shells during the blood circulation. Tumor intracellular environment (low pH value and high glutathione concentration) could trigger the rapid disintegration of TSPDSs due to acid-labile coordination bonds and redox-cleavable disulfide linkages, and then platinum-based drugs were delivered into the nuclei to exert antitumor activity. In vivo antitumor treatments indicated TSPDSs not only provided high antitumor efficiency which was comparable to clinical cisplatin, but also reduced renal toxicity of platinum-based drugs. Moreover, NIR fluorescence of TSPDSs successfully visualized in vitro and in vivo fate of nanoplatforms and disclosed the intracellular platinum delivery and pharmacokinetics. These results confirm tailor-made supramolecular dendritic system with sophisticated nanostructure and excellent performance is a promising candidate as smart theranostic nanoplatforms.


Biomaterials | 2014

p53 mediated apoptosis by reduction sensitive shielding ternary complexes based on disulfide linked PEI ternary complexes.

Yiyan He; Li Xie; Hongmei Song; Zhongwei Gu

Reduction-sensitive hyaluronic acid derivatives (HA-SS-COOH) were shielded on the DNA/polyethylenimine (PEI) to construct ternary complexes (DNA/PEI/HA-SS-COOH, DPS ternary complexes) with efficient gene transfection. Details studied were conducted to investigation of factors influencing transfection efficiency, including the gene compression by fluorescence resonance energy transfer (FRET) spectrum and the intracellular fate of fluorescent labeled complexes by the confocal laser scanning microscope (CLSM). In the FRET study, DPS complexes were found to enhance condensation of DNA in preparation, while timely loosen gene under exposure to reductive reagent. Similar cellular uptake levels were observed for the designed reduction sensitive complexes and the stable one (DNA/PEI/HA, DPH ternary complexes), but the intracellular process was strikingly different for the two types of complexes. Only DPS showed obvious desired intracellular deshielding and endosomal escape, which contributed to highly efficient gene delivery. After loading with p53 plasmid, DPS complexes achieved significantly up-regulated p53 tumor suppressor gene expression at both mRNA and protein levels, as revealed by quantitative polymerase chain reaction (qPCR) and western blot investigations. Transgene induced apoptosis was evaluated by propidium iodide staining and flow cytometry analysis of cell cycle. Tumor cells transfected by DPS complexes containing p53 gene displayed almost 50% higher suppression in proliferation compared to those untreated cells, accompanied with a 46% elevation in the number of cells at sub-G1 phase and remarkable p53 dependent cell cycle perturbations prior to apoptosis. These results demonstrated that targeted delivery of p53 gene via reduction-sensitive DPS ternary complexes enabled up-regulated cellular p53 mRNA level through the exogenous p53 gene, inducing a significant p53-dependent anti-proliferative effect on tumor cells, which could be effective means of cancer treatment.


Molecular Pharmaceutics | 2016

Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery

Qian Jiang; Dong Yue; Yu Nie; Xianghui Xu; Yiyan He; Shiyong Zhang; Ernst Wagner; Zhongwei Gu

Cationic lipid based assemblies provide a promising platform for effective gene condensation into nanosized particles, and the peripheral properties of the assemblies are vital for complexation and interaction with physical barriers. Here, we report three cationic twin head lipids, and each of them contains a dioleoyl-glutamate hydrophobic tail and a twin polar head of lysine, arginine, or histidine. Such lipids were proven to self-assemble in aqueous solution with well-defined nanostructures and residual amino-, guanidine-, or imidazole-rich periphery, showing strong buffering capacity and good liquidity. The assemblies with arginine (RL) or lysine (KL) periphery exhibited positive charges (∼+35 mV) and complete condensation of pDNA into nanosized complexes (∼120 nm). In contrast, assemblies composed of histidine-rich lipids (HL) showed relatively low cationic electric potential (∼+10 mV) and poor DNA binding ability. As expected, the designed RL assemblies with guanidine-rich periphery enhanced the in vitro gene transfection up to 190-fold as compared with the golden standard PEI25k and Lipofectamine 2000, especially in the presence of serum. Meanwhile, interaction with cell and endo/lysosome membrane also revealed the superiority of RL complexes, that the guanidine-rich surface efficiently promoted transmembrane process in cellular internalization and endosomal disruption. More importantly, RL complexes also succeeded beyond others in vivo with significantly (∼7-fold) enhanced expression in HepG2 tumor xenografts in mice, as well as stronger green fluorescence protein imaging in isolated tumors and tumor frozen sections.


Journal of Materials Science: Materials in Medicine | 2015

Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery.

Shengnan Ma; Jie Zhou; Aisha Roshan Mohamed Wali; Yiyan He; Xianghui Xu; James Zhenggui Tang; Zhongwei Gu

Abstract In this study, the amphiphilic fluorinated peptide dendrons functionalized dextran (FPD-HZN-Dex) via an acid-sensitive hydrazone linkage was successfully designed and prepared for the first time. We demonstrated a spontaneous self-assembly of amphiphilic FPD-HZN-Dex into the well-defined nanoparticles with the core-shell architecture in aqueous media, which is attributed to the efficient amphiphilic functionalization of dextran by the hydrophobic fluorinated peptide dendrons. The spherical morphology, uniform particle size and good storage stability of the prepared FPD-HZN-Dex nanoparticles were characterized by dynamic light scattering and transmission electron microscopy, respectively. In vitro drug release studies showed a controlled and pH dependent hydrophobic drug release profile. The cell viability assays show excellent biocompatibility of the FPD-HZN-Dex nanoparticles for both normal cells and tumor cells. Moreover, the FPD-HZN-Dex self-assembled systems based on pH-sensitive hydrazone linkage also can serve as stimulus bioresponsive carriers for on-demand intracellular drug delivery. These self-assembled nanoparticles exhibit a stimulus-induced response to endo/lysosome pH (pH 5.0) that causes their disassembly over time, enabling controlled release of encapsulated DOX. This work has unveiled a unique non-covalent interaction useful for engineering amphiphilic dendrons or dendrimers self-assembled systems.Graphical Abstract


International Journal of Pharmaceutics | 2017

Tailoring the supramolecular structure of amphiphilic glycopolypeptide analogue toward liver targeted drug delivery systems

Aisha Roshan Mohamed Wali; Jie Zhou; Shengnan Ma; Yiyan He; Dong Yue; James Zhenggui Tang; Zhongwei Gu

Amphiphilic glycopolypeptide analogues have harboured great importance in the development of targeted drug delivery systems. In this study, lactosylated pullulan-graft-arginine dendrons (LP-g-G3P) was synthesized using Huisgen azide-alkyne 1,3-dipolar cycloaddition between lactosylated pullulan and generation 3 arginine dendrons bearing Pbf and Boc groups on the periphery. Hydrophilic lactosylated pullulan was selected for amphiphilic modification, aiming at specific lectin recognition. Macromolecular structure of LP-g-G3P combined alkyl, aromatic, and peptide dendritic hydrophobic moieties and was able to self-assemble spontaneously into core-shell nanoarchitectures with small particle sizes and low polydispersity in the aqueous media, which was confirmed by CAC, DLS and TEM. Furthermore, the polyaromatic anticancer drug (doxorubicin, DOX) was selectively encapsulated in the hydrophobic core through multiple interactions with the dendrons, including π-π interactions, hydrogen bonding and hydrophobic interactions. Such multiple interactions had the merits of enhanced drug loading capacity (16.89±2.41%), good stability against dilution, and excellent sustained release property. The cell viability assay presented that LP-g-G3P nanoparticles had an excellent biocompatibility both in the normal and tumor cells. Moreover, LP-g-G3P/DOX nanoparticles could be effectively internalized into the hepatoma carcinoma cells and dramatically inhibited cell proliferation. Thus, this approach paves the way to develop amphiphilic and biofunctional glycopolypeptide-based drug delivery systems.


International Journal of Pharmaceutics | 2018

Cyclodextrin-grafted poly(anhydride) nanoparticles for oral glibenclamide administration. In vivo evaluation using C. elegans

David Lucio; María Cristina Martínez-Ohárriz; Zhongwei Gu; Yiyan He; Paula Aranaz; José L. Vizmanos; Juan M. Irache

Graphical abstract Figure. No caption available. ABSTRACT The aim of this work was to prepare and evaluate cyclodextrins‐modified poly(anhydride) nanoparticles to enhance the oral administration of glibenclamide. A conjugate polymer was synthesized by incorporating hydroxypropyl‐&bgr;‐cyclodextrin to the backbone of poly(methylvinyl ether‐co‐maleic anhydride) via Steglich reaction. The degree of substitution of anhydride rings by cyclodextrins molecules was calculated to be 4.9% using H‐NMR spectroscopy. A central composite design of experiments was used to optimize the preparative process. Under the optimal conditions, nanoparticles displayed a size of about 170 nm, a surface charge of −47 mV and a drug loading of 69 &mgr;g GB/mg. X‐ray diffraction studies confirmed the loss of the crystalline structure of GB due to its dispersion into the nanoparticles, either included into cyclodextrin cavities or entrapped in the polymer chains. Glibenclamide was mainly release by Fickian‐diffusion in simulated intestinal fluid. GB‐loaded nanoparticles produced a hypolipidemic effect over C. elegans N2 wild‐type and daf‐2 mutant. The action mechanism included daf‐2 and daf‐28 genes, both implicated in the insulin signaling pathway of C. elegans. In summary, the covalent linkage of cyclodextrin to the poly(anhydride) backbone could be an interesting strategy to prepare nanoparticles for the oral administration of glibenclamide.


Biomacromolecules | 2018

Tailoring the Supramolecular Structure of Guanidinylated Pullulan toward Enhanced Genetic Photodynamic Therapy

Jie Zhou; Aisha Roshan Mohamed Wali; Shengnan Ma; Yiyan He; Dong Yue; James Zhenggui Tang; Zhongwei Gu

In the progress of designing a gene carrier system, what is urgently needed is a balance of excellent safety and satisfactory efficiency. Herein, a straightforward and versatile synthesis of a cationic guanidine-decorated dendronized pullulan (OGG3P) for efficient genetic photodynamic therapy was proposed. OGG3P was able to block the mobility of DNA from a weight ratio of 2. However, G3P lacking guanidine residues could not block DNA migration until at a weight ratio of 15, revealing guanidination could facilitate DNA condensation via specific guanidinium-phosphate interactions. A zeta potential plateau (∼+23 mV) of OGG3P complexes indicated the nonionic hydrophilic hydroxyl groups in pullulan might neutralize the excessive detrimental cationic charges. There was no obvious cytotoxicity and hemolysis, but also enhancement of transfection efficiency with regard to OGG3P in comparison with that of native G3P in Hela and HEK293T cells. More importantly, we found that the uptake efficiency in Hela cells between OGG3P and G3P complexes was not markedly different. However, guanidination caused changes in uptake pathway and led to macropinocytosis pathway, which may be a crucial reason for improved transfection efficiency. After introducing a therapeutic pKillerRed-mem plasmid, OGG3P complexes achieved significantly enhanced KillerRed protein expression and ROS production under irradiation. ROS-induced cancer cells proliferation suppression was also confirmed. This study highlights the guanidine-decorated dendronized pullulan could emerge as a reliable nonviral gene carrier to specifically deliver therapeutic genes.


Advanced Functional Materials | 2015

Virus‐Inspired Mimics Based on Dendritic Lipopeptides for Efficient Tumor‐Specific Infection and Systemic Drug Delivery

Zhijun Zhang; Xiao Zhang; Xianghui Xu; Yunkun Li; Yachao Li; Dan Zhong; Yiyan He; Zhongwei Gu


Advanced Materials | 2014

Viral Mimicking Ternary Polyplexes: A Reduction‐Controlled Hierarchical Unpacking Vector for Gene Delivery

Yiyan He; Gang Cheng; Li Xie; Youqing Shen; Zhongwei Gu

Collaboration


Dive into the Yiyan He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge