Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yizhi Shao is active.

Publication


Featured researches published by Yizhi Shao.


Oncotarget | 2017

Subchronic arsenism-induced oxidative stress and inflammation contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs

Hongjing Zhao; Ying He; Siwen Li; Xiao Sun; Yu Wang; Yizhi Shao; Zhijun Hou; Mingwei Xing

In many organ dysfunctions, arsenic and its compounds are well known to induce apoptosis by the mitochondria and death receptor apoptotic pathways in liver and airway. However, it is less reported that which signaling pathways contribute to excessive apoptosis of chicken immune organs, a major target of toxic metals biotransformation, which suffer from subchronic arsenism. In this study, we investigated whether the mitochondria or death receptor apoptotic pathways activated in the immune organs (spleen, thymus and bursa of Fabricius) of one-day-old male Hy-line chickens exposed to arsenic trioxide (As2O3), which were fed on diets supplemented with 0, 0.625, 1.25 and 2.5 mg/kg BW of As2O3 for 30, 60 and 90 days. We found that (1) Oxidative damage and inflammatory response were confirmed in the immune organs of chickens fed on As2O3 diet. (2) Subchronic arsenism induced typical apoptotic changes in ultrastructure. (3) TdT-mediated dUTP Nick-End Labeling (TUNEL) showed that the number of apoptotic cells significantly increased under subchronic arsenism. (4) As2O3-induced apoptosis of immune organs involved in mitochondrial pathway (decrease of B-cell lymphoma-2 (Bcl-2) and increase of protein 53 (p53), Bcl-2 Associated X Protein (Bax), caspase-9, caspase-3) and death receptor pathway (increase of factor associated suicide (Fas) and caspase-8). In conclusion, this work is the first to demonstrate that the activation of mitochondria and death receptor apoptosis pathways can lead to excessive apoptosis in immune organs of chickens, which suffer from subchronic arsenism, meanwhile, oxidative stress as well as subsequent inflammatory is a crucial driver of apoptosis.


Journal of Inorganic Biochemistry | 2018

Synergistic effect of copper and arsenic upon oxidative stress, inflammation and autophagy alterations in brain tissues of Gallus gallus

Xiao Sun; Jinglun Li; Hongjing Zhao; Yu Wang; Juanjuan Liu; Yizhi Shao; Yuan Xue; Mingwei Xing

Arsenic or copper is one of the most highly toxic pollution that can cause dysfunction to brains, however, the exact mechanism remains unclear. The aim of the study is to investigate the mechanisms of arsenic or/and copper-induced oxidative stress, inflammation and autophagy in chicken brains and elucidate the interactions between arsenic and copper. A total of 72 1-day-old Hy-line chickens were divided into four groups (18 chickens per group) treated with 30mg/kg arsenic trioxide (As2O3) or/and 300mg/kg copper sulfate (CuSO4) for 12weeks. Histological signs of inflammation were found in the cerebrum, cerebellum and brainstem exposure to arsenic or/and copper. The malondialdehyde (MDA) content were up-regulation, whereas oxidative damage parameters total antioxidant capacity (T-AOC), glutathione (GSH), the inhibition ability of hydroxyl radical (OH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly decreased (P<0.05). The mRNA levels and protein expressions of inflammation markers, such as nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGEs) were significantly increased (P<0.05). The mRNA levels and protein expressions of autophagy markers including phosphatidylinositol 3-kinase (PI3K), Akt, autophagy-related gene 5 (ATG5), microtubule-associated protein light chains 3 (LC3), ATG4B, and Becline1 in different regions of brains were up-regulation (P<0.05), except the mammalian target of rapamycin complex (mTORC). In conclusion, we speculated that arsenic or copper could induce oxidative stress, inflammation and autophagy in chicken brains, and there may have a synergistic effect between copper and arsenic.


Chemosphere | 2018

Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken

Yu Wang; Hongjing Zhao; Yizhi Shao; Juanjuan Liu; Jinglun Li; Liyang Luo; Mingwei Xing

Arsenic (As) is a ubiquitous environmental toxin and robust inducer of oxidative stress (OxS). Copper (Cu) is an essential microelement, which participates in OxS as a cofactor for certain enzymes, with narrow optimal range between essential and toxic concentrations. However, their effects are rarely studied in chicken skeletal muscles, which have soaring per capita consumption andare susceptible to oxidative damage. In the present study, we demonstrated that the administration of copper sulfate (300 mg kg-1) or arsenite (30 mg kg-1) individually or their co-administration leads to varying degrees of OxS in the skeletal muscles of chickens. Corresponding to the protein expression pattern, the mRNA levels of caspase, B-cell lymphoma-2 (Bcl-2) families, and autophagy-related genes were also compromised in the experimental groups, indicating the involvement of both apoptotic and autophagic cell death. Additionally, rampant mitochondrial fission caused the vicious cycle between imbalanced mitochondrial dynamics and OxS, thus tethering intracellular homeostasis. The abovementioned muscle damage and index anomalies were time dependent, and more deteriorated effects were observed in Cu2+ and arsenite co-administered groups than those in groups administered Cu2+ and arsenite alone. Intriguingly, in the studied skeletal muscles, namely wing biceps brachii and leg gastrocnemius, there were conspicuous differences in oxidative toxicity susceptibility, which needs further study. The present study showed that Cu and/or As induce oxidative damage in chicken skeletal muscles and discussed its mechanism in terms of apoptosis, autophagy, and mitochondrial dynamics, thus voicing concerns about poultry breeding areas cross-contaminated with Cu2+ and arsenite.


International Immunopharmacology | 2018

Copper and arsenic-induced oxidative stress and immune imbalance are associated with activation of heat shock proteins in chicken intestines

Yu Wang; Hongjing Zhao; Juanjuan Liu; Yizhi Shao; Jinglun Li; Liyang Luo; Mingwei Xing

ABSTRACT Arsenic and copper, two ubiquitous pollutants, can be oxidative stress inducers when organisms are heavy or chronically exposed, causing adverse effects on digestion and absorption function, resulting in potential losses to poultry husbandry. The present study examined the effects of arsenic trioxide (30mg/kg)‐ and copper sulfate (300mg/kg)‐mixed foods, administered alone or in combination for 12weeks, on various biochemical indices of oxidative stress and immunity in the small intestines of Hy‐line chickens. The results showed that for the first four weeks of exposure, both the redox and immune systems were unaffected. Subsequently, exposure to arsenic or copper significantly increased the level of lipid peroxidation (malondialdehyde and ability of anti‐hydroxy radical) concomitant with a collapse of the antioxidant system (catalase and glutathione peroxidase), in a time‐dependent manner. An increase in the mRNA and protein levels of pro‐inflammatory indicators (nuclear factor kappa B, cyclooxygenases‐2, tumor necrosis factor‐&agr; and prostaglandin E2 synthases) with a definite tendency toward Th1 (Th, helper T cell) cytokines was observed in both arsenic and copper treated chickens. Histologically, the destruction of the biofilm structure and inflammatory infiltrates was observed. Thus, in the intestine, heat shock proteins play protective roles against tissue damage. In some cases, we observed that the tissues of the small intestine were more sensitive to arsenic than to copper. Moreover, co‐exposure induced more serious intestinal toxicity than single treatment group, and this mechanism needs further exploration. HIGHLIGHTSCu and/or As induce intestinal toxicity by destructing antioxidant and immune system.Intestinal toxicity is more pronounced in co‐exposed groups than in individual.Duodenum seems more vulnerable to oxidative damage compared to jejunum and ileum.Heat shock proteins play intestinal protective function against tissues damage.


Oncotarget | 2017

Copper or/and arsenic induce oxidative stress-cascaded, nuclear factor kappa B-dependent inflammation and immune imbalance, trigging heat shock response in the kidney of chicken

Yu Wang; Hongjing Zhao; Yizhi Shao; Juanjuan Liu; Jinglun Li; Mingwei Xing

Excessive amount of copper (Cu) and inorganic arsenic (iAs) coexists in drinking water in many regions, this is associated with high risk of nephropathy, defined as chronic structural and functional disorders of the kidney. However, the underlying mechanisms are not well understood. In this study, a total of 72 day-old Hy-line chickens were exposed to 300 mg/kg copper sulphate or/and 30 mg/kg arsenic trioxide for 12 weeks. Indicators of oxidative stress, inflammation and heat shock proteins (HSPs) production were analyzed in kidney. The results showed that, when the toxicant was administrated alone, there is an antagonism between redox homeostasis during the first 4 weeks, which follows a collapse of antioxidant system manifested by damaged biomembrane structure. Whats worse, oxidative damage-cascaded histopathological lesions were accompanied by increases of proinflammatory mediators and an imbalance of “Th1/Th2 drift” (Th, helper T cell) regulated by nuclear factor kappa B (NF-κB). Simultaneously, intense heat shock response went with the organism. The above-mentioned renal lesions and indicators changes were time-dependent, more complex and deteriorated effects were observed in Cu/iAs combined groups compared with the others. This study supports Cu and iAs have a synergistic type on the nephro-toxicological process additively. In conclusion, oxidative stress and inflammatory induced by Cu or/and iAs are potential mechanisms in their nephrotoxicity, increased heat shock response may play a renoprotection function in tissues damage.


Ecotoxicology and Environmental Safety | 2018

Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus

Siwen Li; Hongjing Zhao; Yu Wang; Yizhi Shao; Bangyi Wang; Yulong Wang; Mingwei Xing

Basal autophagy has an indispensable role in the functioning and maintenance of cardiac geometry under physiological conditions. Recently, increasing evidence has demonstrated that arsenic (As)/copper (Cu) play important roles in the autophagy of the heart. The current study was to evaluate whether oxidative damage by As or/and Cu was correlated with autophagy through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in the heart of birds. Arsenic trioxide (30mg/kg) or/and cupric sulfate (300mg/kg) were administered in a basal diet to male Hy-line chickens (one-day-old) for 12 weeks. The results showed that heart weight/body weight ratio decreased in the As + Cu group only at 4, 8 and 12 weeks. Moreover, we observed that As or/and Cu decreased high-density lipoprotein cholesterol (HDL-C) concentrations, increased total cholesterol (T-CHO) concentrations and cardiac enzymes activities in the serum. On the other hand, As or/and Cu significantly reduced the activities of total antioxidant (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)) along with decreased nonenzymic antioxidant (glutathione (GSH)) concentrations and increased malondialdehyde (MDA) concentrations in the heart. Furthermore, As or/and Cu could induce autophagy in the heart of chickens through decreased mRNA levels of TORC1, TORC2, microtubule associated light chains 3-I (LC3-I) and increased PI3K, AKT1, Beclin1, autophagy associated gene 4B (Atg4B), microtubule associated light chains 3-II (LC3-II), autophagy associated gene 5 (Atg5) and Dynein. Meanwhile, ultrastructural examinations showed that As/Cu could result in the appearance of autolygosomes, autophagic vacuoles and double-membrane structures in the heart. In conclusion, As or/and Cu induced cardiac damage and autophagy via elevating cardiac enzymes activities, inducing oxidative stress and activating the PI3K/AKT/mTORC pathway in heart of chickens. Moreover, As and Cu had a possible synergistic relationship in the heart of chickens.


Ecotoxicology and Environmental Safety | 2017

Assessment of 28 trace elements and 17 amino acid levels in muscular tissues of broiler chicken (Gallus gallus) suffering from arsenic trioxide

Siwen Li; Ying He; Hongjing Zhao; Yu Wang; Juanjuan Liu; Yizhi Shao; Jinglun Li; Xiao Sun; Lina Zhang; Mingwei Xing

The contents of 28 trace elements, 17 amino acid were evaluated in muscular tissues (wings, crureus and pectoralis) of chickens in response to arsenic trioxide (As2O3). A total of 200 one-day-old male Hy-line chickens were fed either a commercial diet (C-group) or an As2O3 supplement diet containing 7.5mg/kg (L-group), 15mg/kg (M-group) or 30mg/kg (H-group) As2O3 for 90 days. The elements content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Under As2O3 exposure, the concentration of As were elevated 8.87-15.76 fold, 7.93-15.63 fold and 5.94-12.45 fold in wings, crureus and pectoralis compared to the corresponding C-group, respectively. 19 element levels (lithium (Li), magnesium (Mg), aluminum (Al), silicon (Si), kalium (K), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), selenium (Se), strontium (Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), mercury (Hg) and lead (Pb), 9 element levels (K, Co, Ni, Cu, As, Se, Sr, Sn, Ba and Hg) and 4 element levels (Mn, cobalt (Co), As, Sr and Ba) were significantly increased (P < 0.05) in wing, crureus and pectoralis, respectively. 2 element levels (sodium (Na) and zinc (Zn)), 5 element levels (Li, Na, Si, titanium (Ti and Cr), 13 element levels (Li, Na, Mg, K, V, Cr, iron (Fe), Cu, Zn, Mo, Sn, Hg and Pb) were significantly decreased (P < 0.05) in wing muscle, crureus and pectoralis, respectively. Additionally, in crureus and pectoralis, the content of total amino acids (TAA) was no significant alterations in L and M-group and then increased approximately 10.2% and 7.6% in H-group, respectively (P < 0.05). In wings, the level of total amino acids increased approximately 10% in L-group, whereas it showed unchanged in M and H-group compared to the corresponding C-group. We also observed that significantly increased levels of proline, cysteine, aspartic acid, methionine along with decrease in the tyrosine levels in muscular tissues compared to the corresponding C-group. In conclusion, the residual of As in the muscular tissues of chickens were dose-dependent and disrupts trace element homeostasis, amino acids level in muscular tissues of chickens under As2O3 exposure. Additionally, the response (trace elements and amino acids) were different in wing, thigh and pectoral of chick under As2O3 exposure. This study provided references for further study of heavy metal poisoning and may be helpful to understanding the toxicological mechanism of As2O3 exposure in muscular tissues of chickens.


Journal of Inorganic Biochemistry | 2018

Copper or/and arsenic induces autophagy by oxidative stress-related PI3K/AKT/mTOR pathways and cascaded mitochondrial fission in chicken skeletal muscle

Yu Wang; Hongjing Zhao; Yizhi Shao; Juanjuan Liu; Jinglun Li; Liyang Luo; Mingwei Xing

Autophagy is an ubiquitin proteasome system for degradation of intracellular damaged proteins and organelles. Both as environmental pollutants, flourishing data show arsenic (As) and copper (Cu) as robust oxidative stress inducers. Whether this kind of damage correlates with autophagy through the phosphoinositide-3-kinase/protein kinase b/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway still remains elusive. A 12-week exposures of Cu or/and As to chicken time-dependently displayed significant element residue in the pectoralis. Aligning with previous results, a strong pro-oxidant nature of Cu and As was clearly indicated by enzyme/nonenzyme antioxidants. Fragmented mitochondria induced by oxidative damage were accompanied by overexpressed dynamin related protein-1 and decreased mitochondrial fusion-related genes. Upon comparative analysis, time-dependent conversion of light chain 3 (LC3)-I to LC3-II, increases in autophagy-related genes such as Bcl-2-interacting protein (Beclin-1) and inhibited PI3K/AKT/mTOR pathway firmly supported the fact that Cu or/and As induces autophagy. These results further coincided with ultrastructure showing clusters of vesicles and autophagosome in the skeletal muscle. Interestingly, the time-dependently elevated heat shock proteins observed in Cu or/and As treated chicken suggest the continuous adaptation and physiological acclimation of organisms to this stress responses. Interestingly, the combination of copper and arsenic elicited more serious oxidative damage and its-cascaded injuries than their individuals. Together, our results showed that after Cu or/and As insult and accumulation, inhibited PI3K/AKT/mTOR pathway activated autophagy and disturbed mitochondrial dynamic, forming a positive feedback with redox disorder.


Developmental and Comparative Immunology | 2017

Molecular cloning and functional characterization of eleven subtypes of interferon-α in Amur tigers (Panthera tigris altaica)

Hongjing Zhao; Jian Ma; Yu Wang; Juanjuan Liu; Yizhi Shao; Jinglun Li; Guangshun Jiang; Mingwei Xing

Interferon has a broad-spectrum of antiviral effects and represents an ideal choice for the development of antiviral drugs. Nonetheless, information about alpha interferon (IFN-α) is vacant in Amur tiger (Panthera tigris altaica), an endangered species and indigenous to northeast Asia. Herein, 11 PtIFN-αs genes, which encoded proteins of 164-165 amino acids, were amplified. Afterwards, expression and purification were conducted in Escherichia coli. In physicochemical analysis, PtIFN-αs were shown to be highly sensitive to trypsin and remained stable despite changes in pH and temperature. In feline kidney cells (F81)/vesicular stomatitis virus (VSV)/canine distemper virus (CDV)/avian influenza virus (AIV) systems, PtIFN-αs were demonstrated to have distinct antiviral activities, some of them (PtIFN-α and PtIFN-α9) inhibited viral transcription levels more effectively than the other subtypes including Felis catus IFN-α, an effective therapeutic agent used for viral infections clinically. Additionally, PtIFN-α and PtIFN-α9 can up-regulate the transcription and expression of p53, a tumor suppressor factor, which could promote apoptosis of virus-infected cells. In conclusion, we cloned and expressed 11 subtypes of PtIFN-α for the first time. Furthermore, PtIFN-α and PtIFN-α9 were likely to be more efficient against both chronic viral infections and neoplastic diseases that affect the Amur tiger population. It will be of significant importance for further studies to protect this endangered species.


Ecotoxicology and Environmental Safety | 2019

Discrepant effects of copper (II) stress on different types of skeletal muscles in chicken: Elements and amino acids

Yu Wang; Hongjing Zhao; Dongxue Fei; Yizhi Shao; Juanjuan Liu; Guangshun Jiang; Mingwei Xing

Different distributions of 28 elements and 17 amino acids in pectoralis, wing biceps brachii and leg gastrocnemius of chicken upon CuSO4 (300 mg/kg) exposure for 90 days were investigated. Accompanied by copper accumulation, pathological injuries were observed in those three kinds of skeletal muscles using histological and ultrastructural methods. Based on data obtained, we analyzed leg gastrocnemius displayed the most increases (P < 0.000) in all three kinds of elements detected, including macroelements (131%), essential microelements (129%) and toxic microelements (179%) than the other two skeletal muscles. Furthermore, decreased total amino acids (P = 0.006), a susceptibility of lipid peroxidation/oxidative stress and a disequilibrium of nutrition and taste were analyzed in the leg gastrocnemius, indicating an unsuitability for human consumption. Intriguingly, these anomalies were scarce in pectoralis and wing biceps brachii. Combined with multivariate analysis we may conclude that leg gastrocnemius are more vulnerable to copper stress than pectoralis and wing biceps brachii in chicken.

Collaboration


Dive into the Yizhi Shao's collaboration.

Top Co-Authors

Avatar

Hongjing Zhao

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Mingwei Xing

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Juanjuan Liu

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Jinglun Li

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Siwen Li

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Liyang Luo

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Xiao Sun

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Guangshun Jiang

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Lina Zhang

Northeast Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge