Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ylva Terelius is active.

Publication


Featured researches published by Ylva Terelius.


Pharmacogenomics Journal | 2003

Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation

Hanjing Xie; Umit Yasar; Stefan Lundgren; Laimonas Griskevicius; Ylva Terelius; Moustapha Hassan; Anders Rane

ABSTRACTThe role of polymorphic CYP2B6 in cyclophosphamide (CPA) bioactivation was investigated in human liver microsomes. A total of 67 human liver specimens were first genotyped with respect to the CYP2B6*5 and CYP2B6*6 variant alleles. CYP2B6 apoprotein levels in 55 liver microsomal preparations were assessed by immunoblotting. 4-Hydroxy-CPA and hydroxy-bupropion were quantified by using HPLC and LC-MS, respectively. 7-Ethoxy-4-trifluoromethyl coumarin O-deethylase activity was measured fluorometrically. The frequencies of CYP2B6*5 and CYP2B6*6 mutant alleles were 9.0 and 16.4%, respectively. CYP2B6 protein expression was detected in 80% of the samples, with a large variation (0.003–2.234, arbitrary units). There was a high correlation between CYP2B6 apoprotein content and CPA 4-hydroxylation (n=55, r=0.81, P<0.0001). When based on the CYP2B6 apoprotein levels, the *6 carriers had significantly higher CPA 4-hydroxylation (P<0.05). CPA 4-hydroxylation also correlated significantly with other CYP2B6-specific reactions (n=20, P<0.0001). Vmax and Km for CPA 4-hydroxylation in recombinant CYP2B6 enzyme were 338 nmol/min/nmol enzyme and 1.4 mM, respectively. CYP2B6 showed much higher in vitro intrinsic clearance than previously observed in recombinant CYP2C19 and CYP2C9 variants in yeast expression system. Our results demonstrate that the polymorphic CYP2B6 is a major enzyme in the bioactivation of CPA. Moreover, we identified a strong impact of CYP2B6*6 on CPA 4-hydroxylation.


Biochemical Pharmacology | 1991

Role of ethanol-inducible cytochrome P450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols

Emanuele Albano; Aldo Tomasi; Jan-Olov Persson; Ylva Terelius; Lucia Goria-Gatti; Magnus Ingelman-Sundberg; Mario U. Dianzani

Incubation of rat liver microsomes with 1-propanol and 1-butanol in the presence of NADPH and of the spin trapping agent 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) allowed the detection of free radical intermediates tentatively identified as 1-hydroxypropyl and 1-hydroxybutyl radical, respectively. Microsomes isolated from rats treated chronically with ethanol (EtOH) or with the combination of starvation and acetone treatment (SA), exhibited a two-fold increase in the ESR signal intensity as compared to untreated controls, whereas no increase was observed in phenobarbital-induced (PB) microsomes. Consistently, in reconstituted membrane vesicles, ethanol-inducible cytochrome P450IIE1 was twice as active as phenobarbital-inducible P450IIB1 in producing 1-butanol free radicals. In the microsomal preparations from EtOH and SA pretreated rats the addition of antibodies against cytochrome P450IIE1, but not of preimmune IgGs, lowered the ESR signal of 1-butanol radicals by more than 50%. The same antibodies decreased the free radical production by untreated microsomes by 35-40%, but were ineffective on microsomes from PB-treated animals. This indicated that cytochrome P450IIE1 is the major enzyme responsible for the free radical activation of alcohols in control and ethanol-fed rats. The generation of 1-hydroxybutyl radicals by EtOH microsomes was inhibited by 40, 48 and 68%, respectively, by the addition of isoniazid, tryptamine and octylamine, compounds known to specifically affect the NADPH oxidase activity of this isoenzyme. This effect was not due to the scavenging of the alcohol radical since none of these compounds affected the ESR signals originated from 1-butanol in a xanthine-xanthine oxidase system. When added to reconstituted membrane vesicles isoniazid, tryptamine and octylamine also decreased 1-butanol radical formation by P450IIE1 by 54, 38 and 66%, respectively. Such an inhibition corresponded to the effect exerted by the same compounds on O2- release from P450IIE1 containing vesicles. These results indicate that the capacity of cytochrome P450IIE1 to reduce oxygen is related to its ability to generate alcohol free radicals and suggest that ferric cytochrome P450-oxygen complex might act as oxidizing species toward alcohols.


Xenobiotica | 1990

Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride

Jan-Olov Persson; Ylva Terelius; Magnus Ingelman-Sundberg

1. Ethanol-inducible P450 IIE1 exhibits a high rate of oxygen consumption and oxidase activity. The enzyme is selectively distributed in the liver centrilobular area, the acinar region specifically destroyed after treatment with P450 IIE1 substrates/inducers such as ethanol, carbon tetrachloride, chloroform, N-nitrosodimethylamine and paracetamol. 2. Twenty substrates and ligands for cytochrome P450 IIB4 and P450 IIE1 were evaluated for their ability to inhibit microsomal and reconstituted NADPH-dependent oxidase activity, and the P450 IIE1-catalysed reduction of carbon tetrachloride to chloroform. Type I ligands and substrates did not inhibit the processes whereas nitrogen-containing compounds such as octylamine, cimetidine, imidazole and tryptamine inhibited NADPH oxidation and H2O2 formation in microsomes from starved and acetone-treated rats by around 50%. 3. Tryptamine, octylamine, isoniazid and p-chloroamphetamine inhibited reconstituted P450 IIE1-dependent oxidase activity with half maximal effects at 14-170 microM. 4. Isoniazid, cimetidine and tryptamine inhibited the P450 IIE1-dependent reduction of carbon tetrachloride, whereas acetone was without effect. 5. The oxygen dependency of microsomal oxidase activity exhibited high-affinity and low-affinity phases, with partial saturation at 20 microM of O2. 6. It is concluded that microsomal oxidase activity takes place at physiological concentrations of O2 and that isozyme-specific type II ligands compete with oxygen or carbon tetrachloride for reduction by P-450 haem.


Biochemical and Biophysical Research Communications | 1991

Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1)

Ylva Terelius; Carina Norsten-Höög; Tomas Cronholm; Magnus Ingelman-Sundberg

Liver microsomes from starved and acetone-treated rats catalyzed NADPH-supported metabolism of acetaldehyde at a rate 8-fold higher than corresponding control microsomes; the Vmax was about 6 nmol/mg microsomal protein/min and the apparent Km 30 microM. The reaction was efficiently inhibited by anti-CYP2E1 IgG, but not by control IgG. Reconstituted membranes containing rat CYP2E1 and cytochrome b5 metabolized acetaldehyde with a Vmax of 20 nmol/nmol/min and an apparent Km of 30 microM, whereas CYP2B4 containing vesicles or vesicles without b5 were ineffective. Gas chromatographic/mass spectrometric analysis of products formed from [2H4]-acetaldehyde with CYP2E1-containing reconstituted membrane vesicles revealed the formation of acetate as the only detectable product, although other water soluble products were also formed as evidenced from incubations with [1,2-14C]acetaldehyde. The results indicate that CYP2E1 is an aldehyde oxidase and thus metabolizes both ethanol and its primary oxidation product. This might have implications in vivo for acetaldehyde metabolism in liver and brain.


Archives of Toxicology | 1993

Exposure to various benzene derivatives differently induces cytochromes P450 2B1 and P450 2E1 in rat liver

Ivan Gut; Ylva Terelius; Emil Frantík; Igor Linhart; Pavel Soucek; Bronislava Filipcová; Hana Klučková

Benzene (B), toluene (T), ethylbenzene (EB), styrene (S) and xylene isomers (oX, mX, pX) are important environmental pollutants and B is a proved human carcinogen. Their inhalation by male Wistar rats (4 mg/1,20 h/day, 4 days) caused cytochrome P450 (P450) induction. The degree of P450 2B1 induction increased and that of 2E1 decreased in the series B, T, EB, S, oX, mX and pX, as estimated by Western blots, while neither solvent was as effective for 2B1 induction as phenobarbital and B was more effective for 2E1 than ethanol. The levels of several other P450s decreased after exposure to these solvents, B being most effective. Exposure to these solvents increased in vitro hepatic microsomal oxidation of B and aniline (AN) (2E1 substrates) 3 to 6-fold, indicating induction of this P450. T oxidation was increased 2 to 4-fold and chlorobenzene (ClB) oxidation 3-fold. Sodium phenobarbital (PB, 80 mg/kg/day, 4 days, i.p.) did not increase ethylmorphine (EM) and benzphetamine (BZP) demethylation (2B1 substrates), neither of the B derivatives did so, and oX decreased it; however, pentoxyresorufin O-dealkylation was well related to the immunochemically detected 2B1 levels in control, PB and B microsomes. PB did not increase B, but increased T and C1B oxidation 2–4 and 3-fold, respectively, indicating possible 2B1 role in their oxidation. B oxidation after various inducers was related to immunochemical 2E1 levels, T and C1B oxidation to both 2B1 and 2E1 and AN oxidation to 2E1 and 1A2 levels. Very efficient B oxidation by 2E1 at low B levels indicates that induction of 2E1 may contribute to B myelotoxicity in vivo more than any other P450 enzyme tested, especially considering the fact that B is the most efficient inducer of its metabolism.


Drug Metabolism and Disposition | 2008

Generation of Mice Transgenic for Human CYP2C18 and CYP2C19: Characterization of the Sexually Dimorphic Gene and Enzyme Expression

Susanne Löfgren; R. Michael Baldwin; Masahiro Hiratsuka; Annelie Lindqvist; Anne Carlberg; Sarah C. Sim; Meint Schülke; Michael Snait; Anne Edenro; Ronny Fransson-Steen; Ylva Terelius; Magnus Ingelman-Sundberg

CYP2C19 is an important enzyme for human drug metabolism, and it also participates in the metabolism of endogenous substrates, whereas the CYP2C18 enzyme is not expressed in human liver despite high mRNA expression. Mice transgenic for the human CYP2C18 and CYP2C19 genes were generated. Quantitative mRNA analysis showed CYP2C18 and CYP2C19 transcripts in liver, kidneys, and heart to be expressed in a sexually dimorphic manner, with male mice having 2- to 100-fold higher levels. Transcript levels in the small intestine were somewhat higher than liver but were similar in both sexes. Transgene mRNA expression was much lower in lung and brain and least in the heart. Immunoblotting using an antipeptide antiserum, reactive with human CYP2Cs and mouse CYP2C70, revealed increased immunoreactive protein in liver microsomes from heterozygous transgenic male mice and a concomitant increase in 5′-hydroxylation of R-omeprazole and S-mephenytoin intrinsic clearance, consistent with CYP2C19 overexpression. A CYP2C18-specific antiserum showed that this enzyme was not expressed in livers or kidneys from heterozygous transgenic mice, but the antiserum had high affinity for recombinant CYP2C18 expressed in COS-7 cells. It is concluded that 1) both the CYP2C18 and CYP2C19 genes are subject to sexually dimorphic regulation in murine liver, kidney, and heart; 2) the CYP2C18 protein is not expressed in murine liver or kidney despite high levels of the corresponding mRNA; and 3) this transgenic model may be suitable for studying sex-dependent regulation of the human CYP2C genes and possibly serve as an in vivo model for CYP2C19-dependent drug metabolism.


Drug Metabolism and Disposition | 2009

Regulation of Human CYP2C18 and CYP2C19 in Transgenic Mice: Influence of Castration, Testosterone, and Growth Hormone

Susanne Löfgren; Baldwin Rm; Carlerös M; Ylva Terelius; Ronny Fransson-Steen; Jessica Mwinyi; David J. Waxman; Magnus Ingelman-Sundberg

The hormonal regulation of human CYP2C18 and CYP2C19, which are expressed in a male-specific manner in liver and kidney in a mouse transgenic model, was examined. The influence of prepubertal castration in male mice and testosterone treatment of female mice was investigated, as was the effect of continuous administration of growth hormone (GH) to transgenic males. Prepubertal castration of transgenic male mice suppressed the expression of CYP2C18 and CYP2C19 in liver and kidney to female levels, whereas expression was increased for the endogenous female-specific mouse hepatic genes Cyp2c37, Cyp2c38, Cyp2c39, and Cyp2c40. Testosterone treatment of female mice increased CYP2C18 and CYP2C19 expression in kidney, and to a lesser extent in liver, but was without effect in brain or small intestine, where gene expression was not gender-dependent. Continuous GH treatment of transgenic males for 7 days suppressed hepatic expression of CYP2C19 (>90% decrease) and CYP2C18 (∼50% decrease) but had minimal effect on the expression of these genes in kidney, brain, or small intestine. Under these conditions, continuous GH induced all four female-specific mouse liver Cyp2c genes in males to normal female levels. These studies indicate that the human CYP2C18 and CYP2C19 genes contain regulatory elements that respond to the endogenous mouse hormonal profiles, with androgen being the primary regulator of male-specific expression in kidney, whereas the androgen-dependent pituitary GH secretory pattern is the primary regulator of male-specific expression in liver in a manner that is similar to the regulation of the endogenous gender-specific hepatic genes.


Journal of Chromatography B | 2013

Gas chromatographic-mass spectrometry method for the detection of busulphan and its metabolites in plasma and urine.

Ibrahim El-Serafi; Ylva Terelius; Brigitte Twelkmeyer; Ann-Louise Hagbjörk; Zuzana Hassan; Moustapha Hassan

Busulphan is an alkylating agent used as conditioning regimen prior to stem cell transplantation. Busulphan is metabolized in the liver and four major metabolites have been identified. The first metabolite is tetrahydrothiophene which is oxidized to tetrahydrothiophene 1-oxide, then sulfolane and finally 3-hydroxy sulfolane. Despite the low molecular weight and wide polarity range of busulphan and its four metabolites, the use of a fused silica non-polar column significantly enhanced the automated gas chromatography-mass spectrometry of their detection in one simple method. The limit of quantification was 0.5μM for busulphan and all its metabolites except 3-OH sulfolane, which was 1.25μM. This method was validated for all the compounds in both human plasma and urine. Lower limits of quantifications (LLOQs) were run in pentaplicate per compound and all results were within 20% of the nominal values. The recovery was determined by comparing the peak area of two quality control (QC) samples, before and after extraction in plasma and urine, in triplicate. Acceptable precision and accuracy have been obtained; at least 3 standard curves have been run for each compound using three different QCs covering the calibration curve in triplicate. The QC values were within 15% (SD) of the nominal values. Selectivity and sensitivity of all compounds have been measured. Compounds were stable up to 50 days after extraction in -20°C and 48h at RT. Moreover, the compounds were stable for three cycles of freezing and thawing. The method was applied in a clinical case where the patient received high dose busulphan; all the compounds have been detected, identified and quantified both in plasma and urine.


Clinical Cancer Research | 2007

The Effect of Repeated Administration of Cyclophosphamide on Cytochrome P450 2B in Rats

Parvaneh Afsharian; Ylva Terelius; Zuzana Hassan; C Nilsson; Stefan Lundgren; Moustapha Hassan

Purpose: The prodrug cyclophosphamide (CPA) is activated by cytochrome P450 (CYP) enzymes. CPA is one of the corner stones in all cancer treatment. We have studied the effect of repeated doses of CPA given at different time intervals on the mRNA, protein levels, and enzyme activity of CYPs in rats. Experimental Design: Two groups of animals (A-75 and A-150) were treated with four doses of CPA (75 and 150 mg/kg, respectively) at short time intervals (6 h). The third group of animals (B-150) was treated with 150 mg/kg at 24-h intervals. Three animals were killed 30 min after administration, and three animals immediately before the next dose. Results: CYP2B1 and CYP2B2 mRNAs were significantly induced at 6 h after each dose in group A-75 (maximum of 2100-fold and 60-fold after the third dose, respectively), whereas the mRNA levels measured at 6 h postadministration in group A-150 were 1,490-fold and 36-fold after the second dose. In group B-150, no significant induction of mRNA levels was observed. CYP2B1 and CYP2B2 protein levels also increased with increased mRNAs. Plasma levels of 4-hydroxy-CPA measured at 30 min after dose correlated well with the increase in protein levels. Conclusion: Up-regulation of CYP2B mRNA, with a concomitant increase in protein expression and activity, were observed after repeated administration of low doses of CPA compared with that found using higher doses, possibly due to toxicity counteracting induction. These results may help in designing more effective dosing schedules for CPA.


Pharmacogenomics Journal | 2015

Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies

Ibrahim El-Serafi; Mona Fares; Manuchehr Abedi-Valugerdi; Parvaneh Afsharian; Ali Moshfegh; Ylva Terelius; Zuzana Potácová; Moustapha Hassan

The role of cytochrome P450 2J2 (CYP2J2) in cyclophosphamide (Cy) bioactivation was investigated in patients, cells and microsomes. Gene expression analysis showed that CYP2J2 mRNA expression was significantly (P<0.01) higher in 20 patients with hematological malignancies compared with healthy controls. CYP2J2 expression showed significant upregulation (P<0.05) during Cy treatment before stem cell transplantation. Cy bioactivation was significantly correlated to CYP2J2 expression. Studies in HL-60 cells expressing CYP2J2 showed reduced cell viability when incubated with Cy (half maximal inhibitory concentration=3.6 mM). Inhibition of CYP2J2 using telmisartan reduced Cy bioactivation by 50% and improved cell survival. Cy incubated with recombinant CYP2J2 microsomes has resulted in apparent Km and Vmax values of 3.7–6.6 mM and 2.9–10.3 pmol/(min·pmol) CYP, respectively. This is the first study demonstrating that CYP2J2 is equally important to CYP2B6 in Cy metabolism. The heart, intestine and urinary bladder express high levels of CYP2J2; local Cy bioactivation may explain Cy-treatment-related toxicities in these organs.

Collaboration


Dive into the Ylva Terelius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Moshfegh

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge