Yo Han Hong
Sungkyunkwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yo Han Hong.
Journal of Ginseng Research | 2017
Muhammad Jahangir Hossen; Yong Deog Hong; Kwang-Soo Baek; Sulgi Yoo; Yo Han Hong; Ji Hye Kim; Jeong-Oog Lee; Dong-Hyun Kim; Jun-Seong Park; Jae Youl Cho
Background BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-β (TRIF), to measure the activation of nuclear factor (NF)-κB and interferon regulatory factor 3 (IRF3). Results BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-β and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-κB (p50 and p65). This extract inhibited the upregulation of NF-κB-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of κB (IκBα) kinase (IKKβ), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-κB pathway by blocking IKKβ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/IKKβ/TBK1 overexpression strategy. Conclusion Overall, our data suggest that the suppression of IKKβ and TBK1, which mediate transcriptional regulation of NF-κB and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.
Journal of Ginseng Research | 2018
Yo Han Hong; Dong-Hyun Kim; Gibaeg Nam; Sulgi Yoo; Sang Yun Han; Seong-Gu Jeong; Eunji Kim; Deok Jeong; Keejung Yoon; Sunggyu Kim; Jun-Seong Park; Jae Youl Cho
Background BIOGF1K, a compound-K-rich fraction, has been shown to display anti-inflammatory activity. Although Panax ginseng is widely used for the prevention of photoaging events induced by UVB irradiation, the effect of BIOGF1K on photoaging has not yet been examined. In this study, we investigated the effects of BIOGF1K on UVB-induced photoaging events. Methods We analyzed the ability of BIOGF1K to prevent UVB-induced apoptosis, enhance matrix metalloproteinase (MMP) expression, upregulate anti-inflammatory activity, reduce sirtuin 1 expression, and melanin production using reverse transcription-polymerase chain reaction, melanin content assay, tyrosinase assay, and flow cytometry. We also evaluated the effects of BIOGF1K on the activator protein-1 signaling pathway, which plays an important role in photoaging, by immunoblot analysis and luciferase reporter gene assays. Results Treatment of UVB-irradiated NIH3T3 fibroblasts with BIOGF1K prevented UVB-induced cell death, inhibited apoptosis, suppressed morphological changes, reduced melanin secretion, restored the levels of type I procollagen and sirtuin 1, and prevented mRNA upregulation of MMP-1, MMP-2, and cyclo-oxygenase-2; these effects all occurred in a dose-dependent manner. In addition, BIOGF1K markedly reduced activator-protein-1-mediated luciferase activity and decreased the activity of mitogen-activated protein kinases (extracellular response kinase, p38, and C-Jun N-terminal kinase). Conclusion Our results strongly suggest that BIOGF1K has anti-photoaging activity and that BIOGF1K could be used in anti-aging cosmeceutical preparations.
Journal of Ginseng Research | 2017
Eunji Kim; Dong Hyun Kim; Sulgi Yoo; Yo Han Hong; Sang Yun Han; Seong-Gu Jeong; Deok Jeong; Jong-Hoon Kim; Jae Youl Cho; Junseong Park
Background Compound K (CK) is a ginsenoside, a metabolite of Panax ginseng. There is interest both in increasing skin health and antiaging using natural skin care products. In this study, we explored the possibility of using CK as a cosmetic ingredient. Methods To assess the antiaging effect of CK, RT-PCR was performed, and expression levels of matrix metalloproteinase-1, cyclooxygenase-2, and type I collagen were measured under UVB irradiation conditions. The skin hydrating effect of CK was tested by RT-PCR, and its regulation was explored through immunoblotting. Melanin content, melanin secretion, and tyrosinase activity assays were performed. Results CK treatment reduced the production of matrix metalloproteinase-1 and cyclooxygenase-2 in UVB irradiated NIH3T3 cells and recovered type I collagen expression level. Expression of skin hydrating factors—filaggrin, transglutaminase, and hyaluronic acid synthases-1 and -2—were augmented by CK and were modulated through the inhibitor of κBα, c-Jun N-terminal kinase, or extracellular signal-regulated kinases pathway. In the melanogenic response, CK did not regulate tyrosinase activity and melanin secretion, but increased melanin content in B16F10 cells was observed. Conclusion Our data showed that CK has antiaging and hydrating effects. We suggest that CK could be used in cosmetic products to protect the skin from UVB rays and increase skin moisture level.
Journal of Ginseng Research | 2018
Jeong-Ock Lee; Eunji Kim; Ji Hye Kim; Yo Han Hong; Han Gyung Kim; Deok Jeong; Juweon Kim; Su Hwan Kim; Chan-Woong Park; Dae Bang Seo; Young-Jin Son; Sang Yun Han; Jae Youl Cho
Background The antioxidant effects of Panax ginseng have been reported in several articles; however, little is known about the antimelanogenesis effect, skin-protective effect, and cellular mechanism of Panax ginseng, especially of P. ginseng calyx. To understand how an ethanol extract of P. ginseng berry calyx (Pg-C-EE) exerts skin-protective effects, we studied its activities in activated melanocytes and reactive oxygen species (ROS)–induced keratinocytes. Methods To confirm the antimelanogenesis effect of Pg-C-EE, we analyzed melanin synthesis and secretion and messenger RNA and protein expression levels of related genes. Ultraviolet B (UVB) and hydrogen peroxide (H2O2) were used to induce cell damage by ROS generation. To examine whether this damage is inhibited by Pg-C-EE, we performed cell viability assays and gene expression and transcriptional activation analyses. Results Pg-C-EE inhibited melanin synthesis and secretion by blocking activator protein 1 regulatory enzymes such as p38, extracellular signal-regulated kinases (ERKs), and cyclic adenosine monophosphate response element–binding protein. Pg-C-EE also suppressed ROS generation induced by H2O2 and UVB. Treatment with Pg-C-EE decreased the expression of matrix metalloproteinases, mitogen-activated protein kinases, and hyaluronidases and increased the cell survival rate. Conclusion These results suggest that Pg-C-EE may have antimelanogenesis properties and skin-protective properties through regulation of activator protein 1 and cyclic adenosine monophosphate response element–binding protein signaling. Pg-C-EE may be used as a skin-improving agent, with moisture retention and whitening effects.
Mediators of Inflammation | 2018
Jae Gwang Park; Young-Su Yi; Sang Yun Han; Yo Han Hong; Sulgi Yoo; Eunji Kim; Seong-Gu Jeong; Adithan Aravinthan; Kwang Soo Baik; Su Young Choi; Jung-Il Kim; Young-Jin Son; Jong-Hoon Kim; Jae Youl Cho
Tabebuia avellanedae has been traditionally used as an herbal remedy to alleviate various diseases. However, the plants pharmacological activity in allergic and inflammatory diseases and its underlying mechanism are not fully understood. Therefore, we investigated the pharmacological activity of Tabetri (T. avellanedae ethanol extract (Ta-EE)) in the pathogenesis of AD. Its underlying mechanism was explored using an AD mouse model and splenocytes isolated from this model. Ta-EE ameliorated the AD symptoms without any toxicity and protected the skin of 2,4-dinitrochlorobenzene- (DNCB-) induced AD mice from damage and epidermal thickness. Ta-EE reduced the secreted levels of allergic and proinflammatory cytokines, including histamine, immunoglobulin E (IgE), interleukin- (IL-) 4, and interferon-gamma (IFN-γ) in the DNCB-induced AD mice. Ta-EE suppressed the mRNA expression of T helper 2-specific cytokines, IL-4 and IL-5, and the proinflammatory cytokine IFN-γ in the atopic dermatitis skin lesions of AD mice. Moreover, Ta-EE suppressed the mRNA expression of IL-4, IL-5, IFN-γ, and another proinflammatory cytokine, IL-12, in the Con A-stimulated splenocytes. It also suppressed IL-12 and IFN-γ in the LPS-stimulated splenocytes. Taken together, these results suggest that Ta-EE protects against the development of AD through the inhibition of mRNA expression of T helper 2-specific cytokines and other proinflammatory cytokines.
Journal of Ginseng Research | 2018
Jeong-Oog Lee; Eunju Choi; Kun Kuk Shin; Yo Han Hong; Han Gyung Kim; Deok Jeong; Jimmy Yoonho Cho; Mohammad Amjad Hossain; Hyun Soo Kim; Young-Su Yi; Dong-Hyun Kim; Jong Hoon Kim; Eunji Kim; Jae Youl Cho
Background Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-α and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-1β, interferon-β, and tumor necrosis factor-α in a dose-dependent manner. Conclusion Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.
Journal of Ethnopharmacology | 2018
Deok Jeong; Jongsung Lee; Seong-Gu Jeong; Yo Han Hong; Sulgi Yoo; Sang Yun Han; Ji Hye Kim; Sunggyu Kim; Jin Sic Kim; Young Soo Chung; Jong-Hoon Kim; Young-Su Yi; Jae Youl Cho
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. AIM OF THE STUDY In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. MATERIALS AND METHODS Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. RESULTS Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. CONCLUSION The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties.
Journal of Cellular Physiology | 2018
Eunji Kim; Ju Y. Yoon; Jongsung Lee; Deok Jeong; Jae G. Park; Yo Han Hong; Ji H. Kim; Adithan Aravinthan; Jong-Hoon Kim; Jae Y. Cho
Inflammation is a response that protects the body from pathogens. Through several inflammatory signaling pathways mediated by various families of transcription factors, such as nuclear factor‐κB (NF‐κB), activator protein‐1 (AP‐1), interferon regulatory factors (IRFs), and signal transducers and activators of transcription (STATs), various inflammatory cytokines and chemokines are induced and inflammatory responses are boosted. Simultaneously, inhibitory systems are activated and provide negative feedback. A typical mechanism by which this process occurs is that inflammatory signaling molecules upregulate mitogen‐activated protein kinase phosphatase‐1 (MKP1) expression. Here, we investigated how kinases regulate MKP1 expression in lipopolysaccharide‐triggered cascades. We found that p38 and c‐Jun N‐terminal kinase (JNK) inhibitors decreased MKP1 expression. Using specific inhibitors, gene knockouts, and gene knockdowns, we also found that tumor necrosis factor receptor‐associated factor family member‐associated nuclear factor κB activator (TANK)‐binding kinase 1 (TBK1) and Janus kinase 2 (JAK2) are involved in the induction of MKP1 expression. By analyzing JAK2‐induced activation of STATs, STAT3‐specific inhibitors, promoter binding sites, and STAT3−/− cells, we found that STAT3 is directly linked to TBK1‐mediated and JAK2‐mediated induction of MKP1 expression. Our data suggest that MKP1 expression can be differentially regulated by p38, JNK, and the TBK1–JAK2–STAT3 pathway after activation of toll‐like receptor 4 (TLR4). These data also imply crosstalk between the AP‐1 pathway and the IRF3 and STAT3 pathways.
Evidence-based Complementary and Alternative Medicine | 2018
Han Gyung Kim; Subin Choi; Jongsung Lee; Yo Han Hong; Deok Jeong; Keejung Yoon; Deok Hyo Yoon; Gi-Ho Sung; Seungihm Lee; Suntaek Hong; Young-Su Yi; Jong-Hoon Kim; Jae Youl Cho
Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.
Mediators of Inflammation | 2017
Jae Gwang Park; Young-Su Yi; Yo Han Hong; Sulgi Yoo; Sang Yun Han; Eunji Kim; Seong-Gu Jeong; Adithan Aravinthan; Kwang Soo Baik; Su Young Choi; Young-Jin Son; Jong Hoon Kim; Jae Youl Cho
Although osteoarthritis (OA), a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE)) on OA pathogenesis induced by monoiodoacetate (MIA) and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7). Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353). Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) signaling pathways in macrophages and chondrocytes.