Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yo Sugawara is active.

Publication


Featured researches published by Yo Sugawara.


Microbiology | 2009

Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins - differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C.

Yingji Jin; Yuki Takegahara; Yo Sugawara; Takuhiro Matsumura; Yukako Fujinaga

Orally ingested botulinum neurotoxin (BoNT) causes food-borne botulism, but BoNT must pass through the gut lining and enter the bloodstream. We have previously found that type B haemagglutinin (HA) proteins in the toxin complex play an important role in the intestinal absorption of BoNT by disrupting the paracellular barrier of the intestinal epithelium, and therefore facilitating the transepithelial delivery of BoNT. Here, we show that type A HA proteins in the toxin complex have a similar disruptive activity and a greater potency than type B HA proteins in the human intestinal epithelial cell lines Caco-2 and T84 and in the canine kidney epithelial cell line MDCK I. In contrast, type C HA proteins in the toxin complex (up to 300 nM) have no detectable effect on the paracellular barrier in these human cell lines, but do show a barrier-disrupting activity and potent cytotoxicity in MDCK I. These findings may indicate that type A and B HA proteins contribute to the development of food-borne botulism, at least in humans, by facilitating the intestinal transepithelial delivery of BoNTs, and that the relative inability of type C HA proteins to disrupt the paracellular barrier of the human intestinal epithelium is one of the reasons for the relative absence of food-borne human botulism caused by type C BoNT.


Current Topics in Microbiology and Immunology | 2012

Uptake of Botulinum Neurotoxin in the Intestine

Yukako Fujinaga; Yo Sugawara; Takuhiro Matsumura

Foodborne and intestinal botulism are the most common forms of human botulism; both result from the absorption of botulinum neurotoxin (BoNT) from the digestive tract into the circulation. BoNT is a large protein toxin (approximately 150 kDa), but it is able to pass through the epithelial barrier in the digestive tract. Recent cellular and molecular biology studies have begun to unravel the mechanisms by which this large protein toxin crosses the intestinal epithelial barrier. This review provides an overview of current knowledge relating to the absorption of botulinum toxins (BoNT and BoNT complex) from the gastrointestinal tract, with particular emphasis on the interaction of these toxins with the intestinal epithelial barrier.


Journal of Biological Chemistry | 2013

Crystal Structure of Clostridium botulinum Whole Hemagglutinin Reveals a Huge Triskelion-shaped Molecular Complex

Sho Amatsu; Yo Sugawara; Takuhiro Matsumura; Kengo Kitadokoro; Yukako Fujinaga

Background: Botulinum HA is a component of the botulinum neurotoxin complex and dramatically increases the oral toxicity of the complex. Results: The crystal structure of botulinum HA reveals that 12 subcomponents of HA constitute a huge triskelion-shaped molecule. Conclusion: The complex is functionally and structurally separable into two parts. Significance: This is the first crystal structure of the whole botulinum HA complex. Clostridium botulinum HA is a component of the large botulinum neurotoxin complex and is critical for its oral toxicity. HA plays multiple roles in toxin penetration in the gastrointestinal tract, including protection from the digestive environment, binding to the intestinal mucosal surface, and disruption of the epithelial barrier. At least two properties of HA contribute to these roles: the sugar-binding activity and the barrier-disrupting activity that depends on E-cadherin binding of HA. HA consists of three different proteins, HA1, HA2, and HA3, whose structures have been partially solved and are made up mainly of β-strands. Here, we demonstrate structural and functional reconstitution of whole HA and present the complete structure of HA of serotype B determined by x-ray crystallography at 3.5 Å resolution. This structure reveals whole HA to be a huge triskelion-shaped molecule. Our results suggest that whole HA is functionally and structurally separable into two parts: HA1, involved in recognition of cell-surface carbohydrates, and HA2-HA3, involved in paracellular barrier disruption by E-cadherin binding.


Nature Communications | 2015

Botulinum toxin A complex exploits intestinal M cells to enter the host and exert neurotoxicity

Takuhiro Matsumura; Yo Sugawara; Masahiro Yutani; Sho Amatsu; Hideo Yagita; Tomoko Kohda; Shin Ichi Fukuoka; Yutaka Nakamura; Shinji Fukuda; Koji Hase; Hiroshi Ohno; Yukako Fujinaga

To cause food-borne botulism, botulinum neurotoxin (BoNT) in the gastrointestinal lumen must traverse the intestinal epithelial barrier. However, the mechanism by which BoNT crosses the intestinal epithelial barrier remains unclear. BoNTs are produced along with one or more non-toxic components, with which they form progenitor toxin complexes (PTCs). Here we show that serotype A1 L-PTC, which has high oral toxicity and makes the predominant contribution to causing illness, breaches the intestinal epithelial barrier from microfold (M) cells via an interaction between haemagglutinin (HA), one of the non-toxic components, and glycoprotein 2 (GP2). HA strongly binds to GP2 expressed on M cells, which do not have thick mucus layers. Susceptibility to orally administered L-PTC is dramatically reduced in M-cell-depleted mice and GP2-deficient (Gp2−/−) mice. Our finding provides the basis for the development of novel antitoxin therapeutics and delivery systems for oral biologics.


Toxicon | 2009

A novel function of botulinum toxin-associated proteins: HA proteins disrupt intestinal epithelial barrier to increase toxin absorption.

Yukako Fujinaga; Takuhiro Matsumura; Yingji Jin; Yuki Takegahara; Yo Sugawara

Food-borne botulinum neurotoxin (BoNT) in the gastrointestinal lumen must cross an epithelial barrier to reach peripheral nerves to mediate its toxicity. The detailed mechanism by which BoNT traverses this barrier remains unclear. We found that hemagglutinin (HA) proteins of type B BoNT complex play an important role in the intestinal absorption of BoNT, disrupting the paracellular barrier of intestinal epithelium, which facilitates transepithelial delivery of BoNT both in vitro and in vivo (Matsumura, T., et al., 2008. Cell. Microbiol. 10, 355-364). We also found that type A HA proteins have a similar disrupting activity with a greater potency than type B HA proteins in the human intestinal epithelial cell lines Caco-2 and T84. In contrast, type C HA proteins in the toxin complex (up to 300 nM) have no detectable effect on the paracellular barrier in these human cell lines. These results may indicate that types A and B HA contribute to develop the food-borne human botulism by facilitating the intestinal transepithelial delivery of BoNTs.


PLOS ONE | 2014

Functional dissection of the Clostridium botulinum type B hemagglutinin complex: identification of the carbohydrate and E-cadherin binding sites.

Yo Sugawara; Masahiro Yutani; Sho Amatsu; Takuhiro Matsumura; Yukako Fujinaga

Botulinum neurotoxin (BoNT) inhibits neurotransmitter release in motor nerve endings, causing botulism, a condition often resulting from ingestion of the toxin or toxin-producing bacteria. BoNTs are always produced as large protein complexes by associating with a non-toxic protein, non-toxic non-hemagglutinin (NTNH), and some toxin complexes contain another non-toxic protein, hemagglutinin (HA), in addition to NTNH. These accessory proteins are known to increase the oral toxicity of the toxin dramatically. NTNH has a protective role against the harsh conditions in the digestive tract, while HA is considered to facilitate intestinal absorption of the toxin by intestinal binding and disruption of the epithelial barrier. Two specific activities of HA, carbohydrate and E-cadherin binding, appear to be involved in these processes; however, the exact roles of these activities in the pathogenesis of botulism remain unclear. The toxin is conventionally divided into seven serotypes, designated A through G. In this study, we identified the amino acid residues critical for carbohydrate and E-cadherin binding in serotype B HA. We constructed mutants defective in each of these two activities and examined the relationship of these activities using an in vitro intestinal cell culture model. Our results show that the carbohydrate and E-cadherin binding activities are functionally and structurally independent. Carbohydrate binding potentiates the epithelial barrier-disrupting activity by enhancing cell surface binding, while E-cadherin binding is essential for the barrier disruption.


Cell Adhesion & Migration | 2011

The botulinum toxin complex meets E-cadherin on the way to its destination

Yo Sugawara; Yukako Fujinaga

Botulinum neurotoxin (BoNT) causes the disease botulism, which is characterized by flaccid paralysis, in humans and animals. The metalloprotease activity of BoNT inhibits neurotransmitter release at neuro-muscular junctions. In most cases, poisoning occurs when BoNT is ingested. Therefore, BoNT must pass through the epithelial barrier of the gastrointestinal tract to enter the systemic circulation and reach the target site. BoNT forms large protein complexes by associating with non-toxic components referred to as non-toxic non-hemagglutinin (NTNH) and hemagglutinin (HA). These proteins protect BoNT from the low pH and proteases in the digestive tract. We recently determined that HA has an unexpected function of disrupting the intercellular epithelial barrier by directly binding to E-cadherin. HA binds to E-cadherin and disrupts its function in a species-specific manner, and this interaction is essential to disrupt tight junctions. This activity is thought to facilitate the absorption of BoNT through the paracellular route of the intestinal epithelium in susceptible species.


Scientific Reports | 2017

Botulinum hemagglutinin-mediated selective removal of cells deviating from the undifferentiated state in hiPSC colonies

Mee-Hae Kim; Yo Sugawara; Yukako Fujinaga; Masahiro Kino-oka

The undifferentiated state of human induced pluripotent stem cells (hiPSCs) depends on their cell–cell and cell–substrate adhesions. In this study, we report that exposure to botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, selectively removed cells that deviated from the undifferentiated state in hiPSC colonies. After HA treatment, cell–cell adhesion was disrupted, deviated cells detached from colony centers, and dividing cells filled these spaces. Because E-cadherin-mediated adhesion was disrupted in undifferentiated cells, stress-fiber formation and focal adhesions were diminished; however, these were subsequently restored, and the cells retained expression of undifferentiated stem cell markers and their differentiation potential. In contrast, actin structures and focal adhesions were lost from deviated cells, and they subsequently died. In undifferentiated and deviated cells, the cadherin/integrin-regulator Rap1 was localized at cell–cell adhesions and in the cytoplasm, respectively. Concurrent HA and Rap1-inhibitor treatment accelerated the deviated-cell detachment and delayed the recovery of hiPSC morphology, but this effect was significantly attenuated by co-treatment with Rap1 activator. Thus, Rap1 regulated E-cadherin–integrin interplay in hiPSC colonies exhibiting deviation, while HA-mediated selective removal of these deviated cells helped maintain the undifferentiated state in the remaining hiPSCs.


PLOS ONE | 2017

Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar

Yo Sugawara; Yukihiro Akeda; Noriko Sakamoto; Dan Takeuchi; Daisuke Motooka; Shota Nakamura; Hideharu Hagiya; Norihisa Yamamoto; Isao Nishi; Hisao Yoshida; Kazuhisa Okada; Khwar Nyo Zin; Mya Mya Aye; Kazunori Tonomo; Shigeyuki Hamada

The bacterial enzyme New Delhi metallo-β-lactamase hydrolyzes almost all β-lactam antibiotics, including carbapenems, which are drugs of last resort for severe bacterial infections. The spread of carbapenem-resistant Enterobacteriaceae that carry the New Delhi metallo-β-lactamase gene, blaNDM, poses a serious threat to public health. In this study, we genetically characterized eight carbapenem-resistant Escherichia coli isolates from a tertiary care hospital in Yangon, Myanmar. The eight isolates belonged to five multilocus-sequence types and harbored multiple antimicrobial-resistance genes, resulting in resistance against nearly all of the antimicrobial agents tested, except colistin and fosfomycin. Nine plasmids harboring blaNDM genes were identified from these isolates. Multiple blaNDM genes were found in the distinct Inc-replicon types of the following plasmids: an IncA/C2 plasmid harboring blaNDM-1 (n = 1), IncX3 plasmids harboring blaNDM-4 (n = 2) or blaNDM-7 (n = 1), IncFII plasmids harboring blaNDM-4 (n = 1) or blaNDM-5 (n = 3), and a multireplicon F plasmid harboring blaNDM-5 (n = 1). Comparative analysis highlighted the diversity of the blaNDM-harboring plasmids and their distinct characteristics, which depended on plasmid replicon types. The results indicate circulation of phylogenetically distinct strains of carbapenem-resistant E. coli with various plasmids harboring blaNDM genes in the hospital.


FEBS Journal | 2015

Clostridium botulinum type C hemagglutinin affects the morphology and viability of cultured mammalian cells via binding to the ganglioside GM3

Yo Sugawara; Masao Iwamori; Takuhiro Matsumura; Masahiro Yutani; Sho Amatsu; Yukako Fujinaga

Botulinum neurotoxin is conventionally divided into seven serotypes, designated A–G, and is produced as large protein complexes through associations with non‐toxic components, such as hemagglutinin (HA) and non‐toxic non‐HA. These non‐toxic proteins dramatically enhance the oral toxicity of the toxin complex. HA is considered to have a role in toxin transport through the intestinal epithelium by carbohydrate binding and epithelial barrier‐disrupting activity. Type A and B HAs disrupt E‐cadherin‐mediated cell adhesion, and, in turn, the intercellular epithelial barrier. Type C HA (HA/C) disrupts the barrier function by affecting cell morphology and viability, the mechanism of which remains unknown. In this study, we identified GM3 as the target molecule of HA/C. We found that sialic acid binding of HA is essential for the activity. It was abolished when cells were pre‐treated with an inhibitor of ganglioside synthesis. Consistent with this, HA/C bound to a‐series gangliosides in a glycan array. In parallel, we isolated clones resistant to HA/C activity from a susceptible mouse fibroblast strain. These cells lacked expression of ST‐I, the enzyme that transfers sialic acid to lactosylceramide to yield GM3. These clones became sensitive to HA/C activity when GM3 was expressed by transfection with the ST‐I gene. The sensitivity of fibroblasts to HA/C was reduced by expressing ganglioside synthesis genes whose products utilize GM3 as a substrate and consequently generate other a‐series gangliosides, suggesting a GM3‐specific mechanism. Our results demonstrate that HA/C affects cells in a GM3‐dependent manner.

Collaboration


Dive into the Yo Sugawara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge