Yohai Kaspi
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yohai Kaspi.
Science | 2017
S. J. Bolton; A. Adriani; Virgil Adumitroaie; Michael E. D. Allison; J. D. Anderson; Sushil K. Atreya; Jeremy Bloxham; Shannon T. Brown; J. E. P. Connerney; E. DeJong; William M. Folkner; Daniel Gautier; D. Grassi; S. Gulkis; Tristan Guillot; Candice J. Hansen; William B. Hubbard; L. Iess; A. P. Ingersoll; Michael A. Janssen; John Leif Jørgensen; Yohai Kaspi; Steven M. Levin; Chao Li; Jonathan I. Lunine; Y. Miguel; A. Mura; G. S. Orton; Tobias Owen; Michael A. Ravine
Juno swoops around giant Jupiter Jupiter is the largest and most massive planet in our solar system. NASAs Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Junos flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiters aurorae and plasma environment, both as Juno approached the planet and during its first close orbit. Science, this issue p. 821, p. 826 Juno’s first close pass over Jupiter provides answers and fresh questions about the giant planet. On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter’s poles show a chaotic scene, unlike Saturn’s poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth’s Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno’s measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter’s core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.
The Astrophysical Journal | 2013
Yohai Kaspi
A variety of observations provide evidence for vigorous motion in the atmospheres of brown dwarfs and directly imaged giant planets. Motivated by these observations, we examine the dynamical regime of the circulation in the atmospheres and interiors of these objects. Brown dwarfs rotate rapidly, and for plausible wind speeds, the flow at large scales will be rotationally dominated. We present three-dimensional, global, numerical simulations of convection in the interior, which demonstrate that at large scales, the convection aligns in the direction parallel to the rotation axis. Convection occurs more efficiently at high latitudes than low latitudes, leading to systematic equator-to-pole temperature differences that may reach ∼1 K near the top of the convection zone. The interaction of convection with the overlying, stably stratified atmosphere will generate a wealth of atmospheric waves, and we arguethat,asinthestratospheresofplanetsinthesolarsystem,theinteractionofthesewaveswiththemeanflowwill causeasignificantatmosphericcirculationatregionaltoglobalscales.Atlargescales,thisshouldconsistofstratified turbulence (possibly organizing into coherent structures such as vortices and jets) and an accompanying overturning circulation. We present an approximate analytic theory of this circulation, which predicts characteristic horizontal temperature variations of several to ∼50 K, horizontal wind speeds of ∼10‐300 m s −1 , and vertical velocities that advect air over a scale height in ∼10 5 ‐10 6 s. This vertical mixing may help to explain the chemical disequilibrium observed on some brown dwarfs. Moreover, the implied large-scale organization of temperature perturbations and vertical velocities suggests that near the L/T transition, patchy clouds can form near the photosphere, helping to explain recent observations of brown-dwarf variability in the near-IR.
Geophysical Research Letters | 2017
S. M. Wahl; William B. Hubbard; Burkhard Militzer; Tristan Guillot; Y. Miguel; Naor Movshovitz; Yohai Kaspi; Ravit Helled; D. Reese; Eli Galanti; S. Levin; J. E. P. Connerney; S. J. Bolton
The Juno spacecraft has measured Jupiters low-order, even gravitational moments, J2–J8, to an unprecedented precision, providing important constraints on the density profile and core mass of the planet. Here we report on a selection of interior models based on ab initio computer simulations of hydrogen-helium mixtures. We demonstrate that a dilute core, expanded to a significant fraction of the planets radius, is helpful in reconciling the calculated Jn with Junos observations. Although model predictions are strongly affected by the chosen equation of state, the prediction of an enrichment of Z in the deep, metallic envelope over that in the shallow, molecular envelope holds. We estimate Jupiters core to contain a 7–25 Earth mass of heavy elements. We discuss the current difficulties in reconciling measured Jn with the equations of state and with theory for formation and evolution of the planet.
The Astrophysical Journal | 2015
Yohai Kaspi
The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone including transitions to Snowball-like states and runaway-greenhouse feedbacks depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.
Journal of Climate | 2013
Ju-Mee Ryoo; Yohai Kaspi; Darryn W. Waugh; George N. Kiladis; Duane E. Waliser; Eric J. Fetzer; Jinwon Kim
AbstractThis study demonstrates that water vapor transport and precipitation are largely modulated by the intensity of the subtropical jet, transient eddies, and the location of wave breaking events during the different phases of ENSO. Clear differences are found in the potential vorticity (PV), meteorological fields, and trajectory pathways between the two different phases. Rossby wave breaking events have cyclonic and anticyclonic regimes, with associated differences in the frequency of occurrence and the dynamic response. During La Nina, there is a relatively weak subtropical jet allowing PV to intrude into lower latitudes over the western United States. This induces a large amount of moisture transport inland ahead of the PV intrusions, as well as northward transport to the west of a surface anticyclone. During El Nino, the subtropical jet is relatively strong and is associated with an enhanced cyclonic wave breaking. This is accompanied by a time-mean surface cyclone, which brings zonal moisture tran...
Nature | 2011
Yohai Kaspi; Tapio Schneider
In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves—nearly stationary Rossby waves—generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.
Journal of the Atmospheric Sciences | 2007
Yohai Kaspi; Glenn R. Flierl
In this paper it is proposed that baroclinic instability of even a weak shear may play an important role in the generation and stability of the strong zonal jets observed in the atmospheres of the giant planets. The atmosphere is modeled as a two-layer structure, where the upper layer is a standard quasigeostrophic layer on a plane and the lower layer is parameterized to represent a deep interior convective columnar structure using a negative plane as in Ingersoll and Pollard. Linear stability theory predicts that the high wavenumber perturbations will be the dominant unstable modes for a small vertical wind shear like that inferred from observations. Here a nonlinear analytical model is developed that is truncated to one growing mode that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. In the weakly supercritical limit, this model agrees with previous weakly nonlinear theory, but it can be explored beyond this limit allowing the multiple jet–induced zonal flow to be stronger than the eddy field. Calculations with a fully nonlinear pseudospectral model produce stable meridional multijet structures when beginning from a random potential vorticity perturbation field. The instability removes energy from the background weak baroclinic shear and generates turbulent eddies that undergo an inverse energy cascade and form multijet zonal winds. The jets are the dominant feature in the instantaneous upper-layer flow, with the eddies being relatively weak. The jets scale with the Rhines length, but are strong enough to violate the barotropic stability criterion. It is shown that the basic physical mechanism for the generation and stability of the jets in the full numerical model is similar to that of the truncated model.
Nature | 2013
Yohai Kaspi; William B. Hubbard; Oded Aharonson; Ravit Helled
The observed cloud-level atmospheric circulation on the outer planets of the Solar System is dominated by strong east–west jet streams. The depth of these winds is a crucial unknown in constraining their overall dynamics, energetics and internal structures. There are two approaches to explaining the existence of these strong winds. The first suggests that the jets are driven by shallow atmospheric processes near the surface, whereas the second suggests that the atmospheric dynamics extend deeply into the planetary interiors. Here we report that on Uranus and Neptune the depth of the atmospheric dynamics can be revealed by the planets’ respective gravity fields. We show that the measured fourth-order gravity harmonic, J4, constrains the dynamics to the outermost 0.15 per cent of the total mass of Uranus and the outermost 0.2 per cent of the total mass of Neptune. This provides a stronger limit to the depth of the dynamical atmosphere than previously suggested, and shows that the dynamics are confined to a thin weather layer no more than about 1,000 kilometres deep on both planets.
Journal of the Atmospheric Sciences | 2013
Yohai Kaspi; Tapio Schneider
Transient and stationary eddies shape the extratropical climate through their transport of heat, moisture, and momentum. In the zonal mean, the transports by transient eddies dominate over those by stationary eddies, but this is not necessarily the case locally. In particular, in storm-track entrance and exit regions during winter, stationary eddies and their interactions with the mean flow dominate the atmospheric energy transport. Here it is shown that stationary eddies can shape storm tracks and control where they terminate by modifying local baroclinicity. Simulations with an idealized aquaplanet GCM show that zonally localized surface heating alone (e.g., ocean heat flux convergence) gives rise to storm tracks, which have a well-defined length scale that is similar to that of Earths storm tracks. The storm tracks terminate downstream of the surface heating even in the absence of continents, at a distance controlled by the stationary Rossby wavelength scale. Stationary eddies play a dual role: within about half a Rossby wavelength downstream of the heating region, stationary eddy energy fluxes increase the baroclinicity and therefore contribute to energizing the storm track; farther downstream, enhanced poleward and upward energy transport by stationary eddies reduces the baroclinicity by reducing the meridional temperature gradients and enhancing the static stability. Transports both of sensible and latent heat (water vapor) play important roles in determining where storm tracks terminate.
Icarus | 2013
Junjun Liu; Tapio Schneider; Yohai Kaspi
NASA’s Juno spacecraft will make microwave and gravity measurements of Jupiter. These can reveal information about the composition of Jupiter’s atmosphere and about the temperature and density structure below the visible clouds, which is in balance with the structure of the zonal winds. Here we show that there exist strong physical constraints on the structure of the off-equatorial deep zonal winds, and that these imply dynamical constraints on the thermal and gravitational signals Juno will measure. The constraints derive from the facts that Jupiter is rapidly rotating, has nearly inviscid flow, and has strong intrinsic heat fluxes emanating from the deep interior. Because of the strong intrinsic heat fluxes, Jupiter’s interior is convecting, but the rapid rotation and weak viscosity constrain the convective motions away from the equator to occur primarily along cylinders parallel to the planet’s spin axis. As a consequence, convection is expected to approximately homogenize entropy along the spin axis, thereby adjusting the interior to a convectively and inertially nearly neutral state. In this state, entropy gradients perpendicular to the spin axis are constant but generally not zero on cylinders concentric with the spin axis. Additionally, thermal wind balance relates entropy gradients perpendicular to the spin axis to the zonal wind shear between the observed cloud-level winds and winds in the deep interior (pressures of order 10 6 bar), which must be much weaker because otherwise the Ohmic energy dissipation produced by the interaction of the zonal winds with the planetary magnetic field would exceed the planetary luminosity. Combining these physical constraints with thermal and electrical properties of the atmosphere, we obtain that zonal winds away from the equator likely extend deeply into Jupiter (to a depth between about 0.84RJ and 0.94RJ with Jupiter radius RJ) but have strengths similar to cloud level winds only within the outer few percent of Jupiter’s radius. Meridional equator-to-pole temperature contrasts in thermal wind balance with the zonal winds increase with depth and reach � 1–2 K at 50 bar; they would reach O(10 K) if the winds were shallowly confined, as has been proposed previously. Such temperature contrasts will be detectable by Juno’s microwave instrument and are expected to be much larger than those associated with variations in water vapor abundance. The associated gravitational signals of the zonal winds will also be detectable by Juno, but they will be more difficult to distinguish from those implied by other flow models with deep zonal flows. The combination of Juno’s gravity and microwave instruments should be able to distinguish deep flows (detectable gravitational signals) from shallow flows (detectable thermal signals), providing strong constraints on the penetration depth of substantial zonal winds.