Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yohei Kirino is active.

Publication


Featured researches published by Yohei Kirino.


Nature Genetics | 2010

Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet's disease

Elaine F. Remmers; Fulya Cosan; Yohei Kirino; Michael J. Ombrello; Neslihan Abaci; Colleen Satorius; Julie M. Le; Barbara Yang; Benjamin D. Korman; Aris Cakiris; Oznur Aglar; Zeliha Emrence; Hulya Azakli; Duran Ustek; Ilknur Tugal-Tutkun; Gulsen Akman-Demir; Wei-Wei Chen; Christopher I. Amos; Michael Dizon; Afet Akdağ Köse; Gülsevim Azizlerli; Burak Erer; Oliver J. Brand; Virginia G. Kaklamani; Phaedon G. Kaklamanis; Eldad Ben-Chetrit; Miles Stanford; Farida Fortune; Marwen Ghabra; William Ollier

Behçets disease is a genetically complex disease of unknown etiology characterized by recurrent inflammatory attacks affecting the orogenital mucosa, eyes and skin. We performed a genome-wide association study with 311,459 SNPs in 1,215 individuals with Behçets disease (cases) and 1,278 healthy controls from Turkey. We confirmed the known association of Behçets disease with HLA-B*51 and identified a second, independent association within the MHC Class I region. We also identified an association at IL10 (rs1518111, P = 1.88 × 10−8). Using a meta-analysis with an additional five cohorts from Turkey, the Middle East, Europe and Asia, comprising a total of 2,430 cases and 2,660 controls, we identified associations at IL10 (rs1518111, P = 3.54 × 10−18, odds ratio = 1.45, 95% CI 1.34–1.58) and the IL23R-IL12RB2 locus (rs924080, P = 6.69 × 10−9, OR = 1.28, 95% CI 1.18–1.39). The disease-associated IL10 variant (the rs1518111 A allele) was associated with diminished mRNA expression and low protein production.


Nature Genetics | 2013

Genome-wide association analysis identifies new susceptibility loci for Behcet's disease and epistasis between HLA-B*51 and ERAP1.

Yohei Kirino; George Bertsias; Yoshiaki Ishigatsubo; Nobuhisa Mizuki; Ilknur Tugal-Tutkun; Emire Seyahi; Yilmaz Ozyazgan; F Sevgi Sacli; Burak Erer; Hidetoshi Inoko; Zeliha Emrence; Atilla Cakar; Neslihan Abaci; Duran Ustek; Colleen Satorius; Atsuhisa Ueda; Mitsuhiro Takeno; Yoonhee Kim; Geryl Wood; Michael J. Ombrello; Akira Meguro; Ahmet Gül; Elaine F. Remmers; Daniel L. Kastner

Individuals with Behçets disease suffer from episodic inflammation often affecting the orogenital mucosa, skin and eyes. To discover new susceptibility loci for Behçets disease, we performed a genome-wide association study (GWAS) of 779,465 SNPs with imputed genotypes in 1,209 Turkish individuals with Behçets disease and 1,278 controls. We identified new associations at CCR1, STAT4 and KLRC4. Additionally, two SNPs in ERAP1, encoding ERAP1 p.Asp575Asn and p.Arg725Gln alterations, recessively conferred disease risk. These findings were replicated in 1,468 independent Turkish and/or 1,352 Japanese samples (combined meta-analysis P < 2 × 10−9). We also found evidence for interaction between HLA-B*51 and ERAP1 (P = 9 × 10−4). The CCR1 and STAT4 variants were associated with gene expression differences. Three risk loci shared with ankylosing spondylitis and psoriasis (the MHC class I region, ERAP1 and IL23R and the MHC class I–ERAP1 interaction), as well as two loci shared with inflammatory bowel disease (IL23R and IL10) implicate shared pathogenic pathways in the spondyloarthritides and Behçets disease.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- And tissue-specific microRNAs

Eric Londina; Phillipe Lohera; Aristeidis G. Telonis; Kevin Quann; Peter M. Clark; Yi Jinga; Eleftheria Hatzimichael; Yohei Kirino; Shozo Honda; Michelle Lally; Bharat Ramratnam; Clay E.S. Comstock; Karen E. Knudsen; Leonard G. Gomella; George L. Spaeth; Lisa A Hark; L. Jay Katz; Agnieszka K. Witkiewicz; Abdolmohamad Rostami; Sergio A. Jimenez; Michael A. Hollingsworth; Jen Jen Yeh; Chad A. Shaw; Steven E. McKenzie; Paul F. Bray; Peter T. Nelson; Simona Zupo; Katrien Van Roosbroeck; Michael J. Keating; Georg A. Calin

Significance MicroRNAs (miRNAs) are small ∼22-nt RNAs that are important regulators of posttranscriptional gene expression. Since their initial discovery, they have been shown to be involved in many cellular processes, and their misexpression is associated with disease etiology. Currently, nearly 2,800 human miRNAs are annotated in public repositories. A key question in miRNA research is how many miRNAs are harbored by the human genome. To answer this question, we examined 1,323 short RNA sequence samples and identified 3,707 novel miRNAs, many of which are human-specific and tissue-specific. Our findings suggest that the human genome expresses a greater number of miRNAs than has previously been appreciated and that many more miRNA molecules may play key roles in disease etiology. Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.


Nature Cell Biology | 2009

Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability

Yohei Kirino; Namwoo Kim; Mariàngels de Planell-Saguer; Eugene Khandros; Stephanie Chiorean; Peter S. Klein; Isidore Rigoutsos; Thomas A. Jongens; Zissimos Mourelatos

Piwi family proteins are essential for germline development and bind piwi-interacting RNAs (piRNAs). The grandchildless gene aub of Drosophila melanogaster encodes the piRNA-binding protein Aubergine (Aub), which is essential for formation of primordial germ cells (PGCs). Here we report that Piwi family proteins of mouse, Xenopus laevis and Drosophila contain symmetrical dimethylarginines (sDMAs). We found that Piwi proteins are expressed in Xenopus oocytes and we identified numerous Xenopus piRNAs. We report that the Drosophila homologue of protein methyltransferase 5 (dPRMT5, csul/dart5), which is also the product of a grandchildless gene, is required for arginine methylation of Drosophila Piwi, Ago3 and Aub proteins in vivo. Loss of dPRMT5 activity led to a reduction in the levels of piRNAs, Ago3 and Aub proteins, and accumulation of retrotransposons in the Drosophila ovary. Our studies explain the relationship between aub and dPRMT5 (csul/dart5) genes by demonstrating that dPRMT5 is the enzyme that methylates Aub. Our findings underscore the significance of sDMA modification of Piwi proteins in the germline and suggest an interacting pathway of genes that are required for piRNA function and PGC specification.


Nature Structural & Molecular Biology | 2007

Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini.

Yohei Kirino; Zissimos Mourelatos

Piwi-interacting RNAs (piRNAs) are a novel class of small RNAs that are expressed specifically and abundantly in male germ cells. Here we report that the 3′ termini of piRNAs are 2′-O-methylated; this modification may have important implications for the biogenesis and function of piRNAs.


Nature Structural & Molecular Biology | 2012

Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis

Anastassios Vourekas; Qi Zheng; Panagiotis Alexiou; Manolis Maragkakis; Yohei Kirino; Brian D. Gregory; Zissimos Mourelatos

Germ cells implement elaborate mechanisms to protect their genetic material and to regulate gene expression during differentiation. Piwi proteins bind Piwi-interacting RNAs (piRNAs), small germline RNAs whose biogenesis and functions are still largely elusive. We used high-throughput sequencing after cross-linking and immunoprecipitation (HITS-CLIP) coupled with RNA–sequencing (RNA-seq) to characterize the genome-wide target RNA repertoire of Mili (Piwil2) and Miwi (Piwil1), two Piwi proteins expressed in mouse postnatal testis. We report the in vivo pathway of primary piRNA biogenesis and implicate distinct nucleolytic activities that process Piwi-bound precursor transcripts. Our studies indicate that pachytene piRNAs are the end products of RNA processing. HITS-CLIP demonstrated that Miwi binds spermiogenic mRNAs directly, without using piRNAs as guides, and independent biochemical analyses of testis mRNA ribonucleoproteins (mRNPs) established that Miwi functions in the formation of mRNP complexes that stabilize mRNAs essential for spermiogenesis.


The EMBO Journal | 2006

Biosynthesis of wybutosine, a hyper‐modified nucleoside in eukaryotic phenylalanine tRNA

Akiko Noma; Yohei Kirino; Yoshiho Ikeuchi; Tsutomu Suzuki

Wybutosine (yW) is a tricyclic nucleoside with a large side chain found at the 3′‐position adjacent to the anticodon of eukaryotic phenylalanine tRNA. yW supports codon recognition by stabilizing codon–anticodon interactions during decoding on the ribosome. To identify genes responsible for yW synthesis from uncharacterized genes of Saccharomyces cerevisiae, we employed a systematic reverse genetic approach combined with mass spectrometry (‘ribonucleome analysis’). Four genes YPL207w, YML005w, YGL050w and YOL141w (named TYW1, TYW2, TYW3 and TYW4, respectively) were essential for yW synthesis. Mass spectrometric analysis of each modification intermediate of yW revealed its sequential biosynthetic pathway. TYW1 is an iron–sulfur (Fe–S) cluster protein responsible for the tricyclic formation. Multistep enzymatic formation of yW from yW‐187 could be reconstituted in vitro using recombinant TYW2, TYW3 and TYW4 with S‐adenosylmethionine, suggesting that yW synthesis might proceed through sequential reactions in a complex formed by multiple components assembled with the precursor tRNA. This hypothesis is also supported by the fact that plant ortholog is a large fusion protein consisting of TYW2 and TYW3 with the C‐terminal domain of TYW4.


Journal of Biological Chemistry | 2008

Modified Uridines with C5-methylene Substituents at the First Position of the tRNA Anticodon Stabilize U·G Wobble Pairing during Decoding

Shinya Kurata; Albert Weixlbaumer; Takashi Ohtsuki; Tomomi Shimazaki; Takeshi Wada; Yohei Kirino; Kazuyuki Takai; Kimitsuna Watanabe; V. Ramakrishnan; Tsutomu Suzuki

Post-transcriptional modifications at the first (wobble) position of the tRNA anticodon participate in precise decoding of the genetic code. To decode codons that end in a purine (R) (i.e. NNR), tRNAs frequently utilize 5-methyluridine derivatives (xm5U) at the wobble position. However, the functional properties of the C5-substituents of xm5U in codon recognition remain elusive. We previously found that mitochondrial tRNAsLeu(UUR) with pathogenic point mutations isolated from MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) patients lacked the 5-taurinomethyluridine (τm5U) modification and caused a decoding defect. Here, we constructed Escherichia coli tRNAsLeu(UUR) with or without xm5U modifications at the wobble position and measured their decoding activities in an in vitro translation as well as by A-site tRNA binding. In addition, the decoding properties of tRNAArg lacking mnm5U modification in a knock-out strain of the modifying enzyme (ΔmnmE) were examined by pulse labeling using reporter constructs with consecutive AGR codons. Our results demonstrate that the xm5U modification plays a critical role in decoding NNG codons by stabilizing U·G pairing at the wobble position. Crystal structures of an anticodon stem-loop containing τm5U interacting with a UUA or UUG codon at the ribosomal A-site revealed that the τm5U·G base pair does not have classical U·G wobble geometry. These structures provide help to explain how the τm5U modification enables efficient decoding of UUG codons.


RNA | 2010

Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization

Yohei Kirino; Anastassios Vourekas; Nabil Sayed; Flavia de Lima Alves; Travis Thomson; Paul Lasko; Juri Rappsilber; Thomas A. Jongens; Zissimos Mourelatos

Piwi proteins such as Drosophila Aubergine (Aub) and mouse Miwi are essential for germline development and for primordial germ cell (PGC) specification. They bind piRNAs and contain symmetrically dimethylated arginines (sDMAs), catalyzed by dPRMT5. PGC specification in Drosophila requires maternal inheritance of cytoplasmic factors, including Aub, dPRMT5, and Tudor (Tud), that are concentrated in the germ plasm at the posterior end of the oocyte. Here we show that Miwi binds to Tdrd6 and Aub binds to Tudor, in an sDMA-dependent manner, demonstrating that binding of sDMA-modified Piwi proteins with Tudor-domain proteins is an evolutionarily conserved interaction in germ cells. We report that in Drosophila tud(1) mutants, the piRNA pathway is intact and most transposons are not de-repressed. However, the localization of Aub in the germ plasm is severely reduced. These findings indicate that germ plasm assembly requires sDMA modification of Aub by dPRMT5, which, in turn, is required for binding to Tudor. Our study also suggests that the function of the piRNA pathway in PGC specification may be independent of its role in transposon control.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers

Shozo Honda; Phillipe Loher; Megumi Shigematsu; Juan P. Palazzo; Ryusuke Suzuki; Issei Imoto; Isidore Rigoutsos; Yohei Kirino

Significance Although transfer RNAs (tRNAs) are best known as adapter molecules essential for translation, recent biochemical and computational evidence has led to a previously unexpected conceptual consensus that tRNAs are not always end products but can further serve as a source of small functional RNAs. Here we report that a novel type of tRNA-derived small RNA, termed SHOT-RNAs, are specifically and abundantly expressed in sex hormone-dependent breast and prostate cancers. SHOT-RNAs are produced from aminoacylated mature tRNAs by angiogenin-mediated cleavage of the anticodon loop, which is promoted by sex hormones and their receptors. We identified the complete repertoire of SHOT-RNAs, and also found their functional significance in cell proliferation. These results have unveiled a novel tRNA-engaged pathway in tumorigenesis. Sex hormones and their receptors play critical roles in the development and progression of the breast and prostate cancers. Here we report that a novel type of transfer RNA (tRNA)-derived small RNA, termed Sex HOrmone-dependent TRNA-derived RNAs (SHOT-RNAs), are specifically and abundantly expressed in estrogen receptor (ER)-positive breast cancer and androgen receptor (AR)-positive prostate cancer cell lines. SHOT-RNAs are not abundantly present in ER− breast cancer, AR− prostate cancer, or other examined cancer cell lines from other tissues. ER-dependent accumulation of SHOT-RNAs is not limited to a cell culture system, but it also occurs in luminal-type breast cancer patient tissues. SHOT-RNAs are produced from aminoacylated mature tRNAs by angiogenin-mediated anticodon cleavage, which is promoted by sex hormones and their receptors. Resultant 5′- and 3′-SHOT-RNAs, corresponding to 5′- and 3′-tRNA halves, bear a cyclic phosphate (cP) and an amino acid at the 3′-end, respectively. By devising a “cP-RNA-seq” method that is able to exclusively amplify and sequence cP-containing RNAs, we identified the complete repertoire of 5′-SHOT-RNAs. Furthermore, 5′-SHOT-RNA, but not 3′-SHOT-RNA, has significant functional involvement in cell proliferation. These results have unveiled a novel tRNA-engaged pathway in tumorigenesis of hormone-dependent cancers and implicate SHOT-RNAs as potential candidates for biomarkers and therapeutic targets.

Collaboration


Dive into the Yohei Kirino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsuhisa Ueda

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeru Ohno

Yokohama City University Medical Center

View shared research outputs
Top Co-Authors

Avatar

M. Hama

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shozo Honda

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Atsushi Ihata

Yokohama City University

View shared research outputs
Researchain Logo
Decentralizing Knowledge