Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yohei Morita is active.

Publication


Featured researches published by Yohei Morita.


Journal of Experimental Medicine | 2010

Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment

Yohei Morita; Hideo Ema; Hiromitsu Nakauchi

Hematopoietic stem cells (HSCs) have been extensively characterized based on functional definitions determined by experimental transplantation into lethally irradiated mice. In mice, HSCs are heterogeneous with regard to self-renewal potential, in vitro colony-forming activity, and in vivo behavior. We attempted prospective isolation of HSC subsets with distinct properties among CD34−/low c-Kit+Sca-1+Lin− (CD34−KSL) cells. CD34−KSL cells were divided, based on CD150 expression, into three fractions: CD150high, CD150med, and CD150neg cells. Compared with the other two fractions, CD150high cells were significantly enriched in HSCs, with great self-renewal potential. In vitro colony assays revealed that decreased expression of CD150 was associated with reduced erythroblast/megakaryocyte differentiation potential. All three fractions were regenerated only from CD150high cells in recipient mice. Using single-cell transplantation studies, we found that a fraction of CD150high cells displayed latent and barely detectable myeloid engraftment in primary-recipient mice but progressive and multilineage reconstitution in secondary-recipient mice. These findings highlight the complexity and hierarchy of reconstitution capability, even among HSCs in the most primitive compartment.


Cell | 2013

Clonal Analysis Unveils Self-Renewing Lineage-Restricted Progenitors Generated Directly from Hematopoietic Stem Cells

Ryo Yamamoto; Yohei Morita; Jun Ooehara; Sanae Hamanaka; Masafumi Onodera; Karl Lenhard Rudolph; Hideo Ema; Hiromitsu Nakauchi

Consensus holds that hematopoietic stem cells (HSCs) give rise to multipotent progenitors (MPPs) of reduced self-renewal potential and that MPPs eventually produce lineage-committed progenitor cells in a stepwise manner. Using a single-cell transplantation system and marker mice, we unexpectedly found myeloid-restricted progenitors with long-term repopulating activity (MyRPs), which are lineage-committed to megakaryocytes, megakaryocyte-erythroid cells, or common myeloid cells (MkRPs, MERPs, or CMRPs, respectively) in the phenotypically defined HSC compartment together with HSCs. Paired daughter cell assays combined with transplantation revealed that HSCs can give rise to HSCs via symmetric division or directly differentiate into MyRPs via asymmetric division (yielding HSC-MkRP or HSC-CMRP pairs). These myeloid bypass pathways could be essential for fast responses to ablation stress. Our results show that loss of self-renewal and stepwise progression through specific differentiation stages are not essential for lineage commitment of HSCs and suggest a revised model of hematopoietic differentiation.


The EMBO Journal | 2006

Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells

Satoshi Yamazaki; Atsushi Iwama; Shin-ichiro Takayanagi; Yohei Morita; Koji Eto; Hideo Ema; Hiromitsu Nakauchi

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche in a noncycling state and enter the cell cycle at long intervals. However, little is known about inter‐ and intracellular signaling mechanisms underlying this unique property of HSCs. Here, we show that lipid raft clustering is a key event in the regulation of HSC dormancy. Freshly isolated HSCs from the BM niche lack lipid raft clustering, exhibit repression of the AKT–FOXO signaling pathway, and express abundant p57Kip2 cyclin‐dependent kinase inhibitor. Lipid raft clustering induced by cytokines is essential for HSC re‐entry into the cell cycle. Conversely, inhibition of lipid raft clustering caused sustained nuclear accumulation of FOXO transcription factors and induced HSC hibernation ex vivo. These data establish a critical role for lipid rafts in regulating the cell cycle, the survival, and the entry into apoptosis of HSCs and uncover a striking similarity in HSC hibernation and Caenorhabditis elegans dauer formation.


Cell | 2012

A Differentiation Checkpoint Limits Hematopoietic Stem Cell Self-Renewal in Response to DNA Damage

Jianwei Wang; Qian Sun; Yohei Morita; Hong Jiang; Alexander Groß; André Lechel; Kai Hildner; Luis Miguel Guachalla; Anne Gompf; Daniel Hartmann; Axel Schambach; Torsten Wuestefeld; Daniel Dauch; Hubert Schrezenmeier; Wolf-Karsten Hofmann; Hiromitsu Nakauchi; Zhenyu Ju; Hans A. Kestler; Lars Zender; K. Lenhard Rudolph

Checkpoints that limit stem cell self-renewal in response to DNA damage can contribute to cancer protection but may also promote tissue aging. Molecular components that control stem cell responses to DNA damage remain to be delineated. Using in vivo RNAi screens, we identified basic leucine zipper transcription factor, ATF-like (BATF) as a major component limiting self-renewal of hematopoietic stem cells (HSCs) in response to telomere dysfunction and γ-irradiation. DNA damage induces BATF in a G-CSF/STAT3-dependent manner resulting in lymphoid differentiation of HSCs. BATF deletion improves HSC self-renewal and function in response to γ-irradiation or telomere shortening but results in accumulation of DNA damage in HSCs. Analysis of bone marrow from patients with myelodysplastic syndrome supports the conclusion that DNA damage-dependent induction of BATF is conserved in human HSCs. Together, these results provide experimental evidence that a BATF-dependent differentiation checkpoint limits self-renewal of HSCs in response to DNA damage.


Cancer Research | 2008

The Polycomb Gene Product BMI1 Contributes to the Maintenance of Tumor-Initiating Side Population Cells in Hepatocellular Carcinoma

Tetsuhiro Chiba; Satoru Miyagi; Atsunori Saraya; Ryutaro Aoki; Atsuyoshi Seki; Yohei Morita; Yutaka Yonemitsu; Osamu Yokosuka; Hideki Taniguchi; Hiromitsu Nakauchi; Atsushi Iwama

Side population (SP) cell analysis and sorting have been successfully applied to hepatocellular carcinoma (HCC) cell lines to identify a minor cell population with cancer stem cell properties. However, the molecular mechanisms operating in SP cells remain unclear. The polycomb gene product BMI1 plays a central role in the self-renewal of somatic stem cells in a variety of tissues and organs and seems to be implicated in tumor development. In this study, we determined the critical role of BMI1 in the maintenance of cancer stem cells with the SP phenotype in HCC cell lines. BMI1 was preferentially expressed in SP cells in Huh7 and PLC/PRF/5 HCC cells compared with the corresponding non-SP cells. Lentiviral knockdown of BMI1 considerably decreased the number of SP cells in both Huh7 and PLC/PRF/5 cells. Long-term culture of purified SP cells resulted in a drastic reduction in the SP subpopulation upon the BMI1 knockdown, indicating that BMI1 is required for the self-renewal of SP cells in culture. More importantly, the BMI1 knockdown abolished the tumor-initiating ability of SP cells in nonobese diabetic/severe combined immunodeficiency mice. Derepression of the INK4A and ARF genes that are major targets for BMI1 was not necessarily associated with impaired self-renewal of SP cells caused by BMI1 knockdown. In conclusion, our findings define an important role for BMI1 in the maintenance of tumor-initiating SP cells in HCC. BMI1 might be a novel therapeutic target for the eradication of cancer stem cells in HCC.


Nature Protocols | 2007

Adult mouse hematopoietic stem cells: purification and single-cell assays

Hideo Ema; Yohei Morita; Satoshi Yamazaki; Azusa Matsubara; Jun Seita; Yuko Tadokoro; Hiroyoshi Kondo; Hina Takano; Hiromitsu Nakauchi

Mouse hematopoietic stem cells (HSCs) are the best-studied stem cells because functional assays for mouse HSCs were established earliest and purification techniques for mouse HSCs have progressed furthest. Here we describe our current protocols for the purification of CD34−/lowc-Kit+Sca-1+lineage marker− (CD34−KSL) cells, the HSC population making up approximately 0.005% of bone marrow cells in adult C557BL/6 mice. Purified HSCs have been characterized at cellular and molecular levels. Since clonal analysis is essential for the study of self-renewal and lineage commitment in HSCs, here we present our single-cell colony assay and single-cell transplantation procedures. We also introduce our immunostaining procedures for small numbers of HSCs, which are useful for signal transduction analysis. The purification of CD34−KSL cells requires approximately 6 h. Initialization of single-cell culture requires approximately 1 h. Single-cell transplantation requires approximately 6 h. Single-cell immunostaining requires approximately 2 d.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

VEGFR1 Tyrosine Kinase Signaling Promotes Lymphangiogenesis as Well as Angiogenesis Indirectly via Macrophage Recruitment

Masato Murakami; Yujuan Zheng; Masanori Hirashima; Toshio Suda; Yohei Morita; Jun Ooehara; Hideo Ema; Guo-Hua Fong

Objective—Angiogenesis and lymphangiogenesis are complex phenomena that involve the interplay of several growth factors and receptors. Recently, we have demonstrated that in Keratin-14 (K14) promoter-driven Vegf-A transgenic (Tg) mice, not only angiogenesis but also lymphangiogenesis is stimulated. However, the mechanism by which VEGFR1 is involved in lymphangiogenesis remains unclear. Methods and Results—To examine how important the tyrosine kinase (TK) of VEGFR1 is in lymphangiogenesis in K14 Vegf-A Tg mice, we crossed the K14 Vegf-A Tg mice with VEGFR1-TK–deficient mice to generate double mutant K14 Vegf-A Tg Vegfr1 tk−/− mice. K14 Vegf-A Tg Vegfr1 tk−/− mice exhibit a remarkable decrease in lymphangiogensis as well as angiogenesis in subcutaneous tissues. To address the mechanism underlying the decrease in lymphangiogensis, we investigated the recruitment of monocyte-macrophage-lineage cells into the skin. The recruitment of VEGFR1-expressing macrophages driven by VEGF-A was reduced in K14 Vegf-A Tg Vegfr1 tk−/− mice. Vegf-A Tg mice that received VEGFR1-TK–deficient bone marrow showed a reduction of macrophage recruitment, lymphangiogenesis and angiogenesis compared with those in K14 Vegf-A Tg mice. Conclusions—VEGFR1 signaling promotes lymphangiogenesis as well as angiogenesis mainly by increasing bone marrow–derived macrophage recruitment.


Journal of Clinical Investigation | 2010

Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo

Hitoshi Takizawa; Satoshi Nishimura; Naoya Takayama; Atsushi Oda; Hidekazu Nishikii; Yohei Morita; Sei Kakinuma; Satoshi Yamazaki; Satoshi Okamura; Noriko Tamura; Shinya Goto; Akira Sawaguchi; Ichiro Manabe; Kiyoshi Takatsu; Hiromitsu Nakauchi; Satoshi Takaki; Koji Eto

The nature of the in vivo cellular events underlying thrombus formation mediated by platelet activation remains unclear because of the absence of a modality for analysis. Lymphocyte adaptor protein (Lnk; also known as Sh2b3) is an adaptor protein that inhibits thrombopoietin-mediated signaling, and as a result, megakaryocyte and platelet counts are elevated in Lnk-/- mice. Here we describe an unanticipated role for Lnk in stabilizing thrombus formation and clarify the activities of Lnk in platelets transduced through integrin alphaIIbbeta3-mediated outside-in signaling. We equalized platelet counts in wild-type and Lnk-/- mice by using genetic depletion of Lnk and BM transplantation. Using FeCl3- or laser-induced injury and in vivo imaging that enabled observation of single platelet behavior and the multiple steps in thrombus formation, we determined that Lnk is an essential contributor to the stabilization of developing thrombi within vessels. Lnk-/- platelets exhibited a reduced ability to fully spread on fibrinogen and mediate clot retraction, reduced tyrosine phosphorylation of the beta3 integrin subunit, and reduced binding of Fyn to integrin alphaIIbbeta3. These results provide new insight into the mechanism of alphaIIbbeta3-based outside-in signaling, which appears to be coordinated in platelets by Lnk, Fyn, and integrins. Outside-in signaling modulators could represent new therapeutic targets for the prevention of cardiovascular events.


Journal of Experimental Medicine | 2005

Endomucin, a CD34-like sialomucin, marks hematopoietic stem cells throughout development

Azusa Matsubara; Atsushi Iwama; Satoshi Yamazaki; Chie Furuta; Ryutaro Hirasawa; Yohei Morita; Mitsujiro Osawa; Tsutomu Motohashi; Koji Eto; Hideo Ema; Toshio Kitamura; Dietmar Vestweber; Hiromitsu Nakauchi

To detect as yet unidentified cell-surface molecules specific to hematopoietic stem cells (HSCs), a modified signal sequence trap was successfully applied to mouse bone marrow (BM) CD34−c-Kit+Sca-1+Lin− (CD34−KSL) HSCs. One of the identified molecules, Endomucin, is an endothelial sialomucin closely related to CD34. High-level expression of Endomucin was confined to the BM KSL HSCs and progenitor cells, and, importantly, long-term repopulating (LTR)–HSCs were exclusively present in the Endomucin+CD34−KSL population. Notably, in the yolk sac, Endomucin expression separated multipotential hematopoietic cells from committed erythroid progenitors in the cell fraction positive for CD41, an early embryonic hematopoietic marker. Furthermore, developing HSCs in the intraembryonic aorta-gonad-mesonephros (AGM) region were highly enriched in the CD45−CD41+Endomucin+ fraction at day 10.5 of gestation (E10.5) and in the CD45+CD41+Endomucin+ fraction at E11.5. Detailed analyses of these fractions uncovered drastic changes in their BM repopulating capacities as well as in vitro cytokine responsiveness within this narrow time frame. Our findings establish Endomucin as a novel cell-surface marker for LTR-HSCs throughout development and provide a powerful tool in understanding HSC ontogeny.


Experimental Hematology | 2014

Heterogeneity and hierarchy of hematopoietic stem cells

Hideo Ema; Yohei Morita; Toshio Suda

Hematopoietic stem cells (HSCs) are a more heterogeneous population than previously thought. Extensive analysis of reconstitution kinetics after transplantation allows a new classifications of HSCs based on lineage balance. Previously unrecognized classes of HSCs, such as myeloid- and lymphoid-biased HSCs, have emerged. However, varying nomenclature has been used to describe these cells, promoting confusion in the field. To establish a common nomenclature, we propose a reclassification of short-, intermediate-, and long-term (ST, IT, and LT) HSCs defined as: ST < 6 months, IT > 6 months, and LT > 12. We observe that myeloid-biased HSCs or α cells overlap with LT-HSCs, whereas lymphoid-biased HSCs or γ/δ cells overlap with ST-HSCs, suggesting that HSC lifespan is linked to cell differentiation. We also suggest that HSC heterogeneity prompts reconsideration of long-term (>4 months) multilineage reconstitution as the gold standard for HSC detection. In this review, we discuss relationships among ST-, IT-, and LT-HSCs relevant to stem cell heterogeneity, hierarchical organization, and differentiation pathways.

Collaboration


Dive into the Yohei Morita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideo Ema

University of Tsukuba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshio Suda

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge