Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoichi Miyamae is active.

Publication


Featured researches published by Yoichi Miyamae.


Toxicology | 2014

Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats.

Masayuki Kanki; Akira Moriguchi; Daisuke Sasaki; Hikaru Mitori; Atsushi Yamada; Akira Unami; Yoichi Miyamae

Despite increased focus in recent years on urinary microRNA (miRNA) biomarkers in patients with diabetes and chronic kidney diseases, few studies have explored urinary miRNA markers in drug-induced nephrotoxicity. Here, we attempted to identify urinary miRNA markers suitable for use in detecting cisplatin-induced nephrotoxicity in rats. Cisplatin (6mg/kg) was given as a single intraperitoneal injection to male Sprague-Dawley (SD) rats, and urine collected from Days 4 to 5 for 17h under fed or fasted conditions. MiRNAs were identified using TaqMan(®) Rodent microRNA PCR cards, and rats were euthanized 5 days after administration. Levels of 25 miRNAs were significantly increased in the urine of cisplatin-treated rats under both fed and fasted conditions, while the levels of these miRNAs were decreased in either or both the cortex or outer medulla of the kidney. Analysis of time and dose dependency in the urine from rats treated with cisplatin (1, 3, and 6mg/kg) on Days 1, 3, and 7, showed levels of 25 miRNAs were increased in urine and their appearance correlated with the severity of necrosis in the proximal tubules. Four miRNAs (let-7g-5p, miR-93-5p, miR-191a-5p and miR-192-5p) in urine were measured by absolute quantification, and a strong correlation was found between relative and absolute quantification methods. In summary, we identified 25 miRNAs in urine that were able to be used as non-invasive biomarkers for the detection of cisplatin-induced proximal tubular injury in rats. This study is the first step in demonstrating the potential utility of urinary miRNAs in assessing nephrotoxicity. Further study, such as collaborative programs currently underway in the HESI consortium, will clarify the usability of identified miRNA markers in measurement of other nephrotoxicants and injury-site specificity.


PLOS ONE | 2011

Cyclical and patch-like GDNF distribution along the basal surface of Sertoli cells in mouse and hamster testes.

Takeshi Sato; Yoshimi Aiyama; Mayuko Ishii-Inagaki; Kenshiro Hara; Naoki Tsunekawa; Kyoko Harikae; Mami Uemura-Kamata; Mai Shinomura; Xiao Bo Zhu; Seishi Maeda; Sachi Kuwahara-Otani; Akihiko Kudo; Hayato Kawakami; Masami Kanai-Azuma; Michio Fujiwara; Yoichi Miyamae; Shosei Yoshida; Makoto Seki; Masamichi Kurohmaru; Yoshiakira Kanai

Background and Aims In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. Methodology and Principal Findings Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. Conclusion/Significance Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules.


Toxicology and Applied Pharmacology | 2013

Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation

Ayano Takeuchi-Yorimoto; Takahisa Noto; Atsushi Yamada; Yoichi Miyamae; Yuji Oishi; Masahiro Matsumoto

Nonalcoholic steatohepatitis (NASH) is characterized by combined pathology of steatosis, lobular inflammation, fibrosis, and hepatocellular degeneration, with systemic symptoms of diabetes or hyperlipidemia, all in the absence of alcohol abuse. Given the therapeutic importance and conflicting findings regarding the potential for healing the histopathologic features of NASH in humans, particularly fibrosis, we investigated the reversibility of NASH-related findings in Wistar rats fed a choline-deficient and iron-supplemented l-amino acid-defined (CDAA) diet for 12weeks, with a recovery period of 7weeks, during which the diets were switched to a choline-sufficient and iron-supplemented l-amino acid-defined (CSAA) one. Analysis showed that steatosis and inflammation were significantly resolved by the end of the recovery period, along with decreases in AST and ALT activities within 4weeks. In contrast, fibrosis remained even after the recovery period, to an extent similar to that in continuously CDAA-fed animals. Real-time reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemical investigations revealed that expression of some factors indicating oxidative stress (CYP2E1, 4-HNE, and iNOS) were elevated, whereas catalase and SOD1 were decreased, and a hypoxic state and CD34-positive neovascularization were evident even after the recovery period, although the fibrogenesis pathway by activated α-SMA-positive hepatic stellate cells via TGF-β and TIMPs decreased to the CSAA group level. In conclusion, persistent fibrosis was noted after the recovery period of 7weeks, possibly due to sustained hypoxia and oxidative stress supposedly caused by capillarization. Otherwise, histopathological features of steatosis and inflammation, as well as serum AST and ALT activities, were recovered.


Mutation Research | 2013

Induction of a whole chromosome loss by colcemid in human cells elucidated by discrimination between FISH signal overlap and chromosome loss.

Mika Yamamoto; Akihiro Wakata; Yoshinobu Aoki; Yoichi Miyamae; Seiji Kodama

Aneuploidy is a change in the number of chromosomes and an essential component in tumorigenesis. Therefore, accurate and sensitive detection of aneuploidy is important in screening for carcinogens. In vitro micronucleus (MN) assay has been adopted in the recently revised International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S2 guideline and can be employed to predict both clastogenic and aneugenic chromosomal aberrations in interphase cells. However, distinguishing clastogens and aneugens is not possible using this assay. The Organization for Economic Co-operation and Development (OECD) guideline TG487 therefore recommends the use of centromere/kinetochore staining in micronuclei to differentiate clastogens from aneugens. Here, we analyzed numerical changes of a specific chromosome in cytokinesis-blocked binucleated cells by fluorescence in situ hybridization (FISH) using the specific centromere probe in human lymphoblastoid TK6 cells treated with aneugens (colcemid and vincristine) or clastogens (methyl methanesulfonate [MMS] and 4-nitroquinoline-1-oxide [4-NQO]). Colcemid and vincristine significantly increased the frequencies of nondisjunction and loss of FISH signals, while MMS and 4-NQO slightly increased only the frequency of loss of FISH signals. The loss of FISH signals of a specific chromosome from two to one per nucleus implies either a loss of a whole chromosome or an overlap of two signals. To distinguish a chromosome loss from signal overlap, we investigated the number of FISH signals and the fluorescent intensity of each signal per nucleus using a probe specific for whole chromosome 2 in binucleated TK6 cells and primary human lymphocytes treated with colcemid and MMS. By discriminating between chromosome loss and FISH signal overlap, we revealed that colcemid, but not MMS, induced a loss of a whole chromosome in primary lymphocytes and TK6 cells.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015

Repeated-dose liver micronucleus assay of mitomycin C in young adult rats.

Keisuke Shimada; Mika Yamamoto; Miyuki Takashima; Yumi Wako; Kazufumi Kawasako; Yoshinobu Aoki; Jiro Seki; Yoichi Miyamae; Akihiro Wakata

The repeated-dose liver micronucleus (RDLMN) assay has been previously reported to be effective for the detection of hepatocarcinogens and suitable for general toxicology studies. A collaborative study was conducted to evaluate whether this RDLMN assay using young adult rats without collagenase perfusion of the liver can be used to detect genotoxic carcinogens. In this study, we performed the RDLMN assay in young adult rats that received intraperitoneal injections of 0.25, 0.5 or 1.0mg/kg/day of mitomycin C (MMC) for 14 and 28 days. The micronucleus induction in the bone marrow was concurrently measured, and a histopathological examination of the liver was conducted. The results revealed that the frequency of micronucleated hepatocytes (MNHEPs) was significantly increased in all of the treatment groups. However, the highest occurrence of MNHEPs was observed in the low-dose treatment group in both the 14- and the 28-day study periods. In addition, histopathological changes indicating hepatotoxicity were not observed even in the group that received the highest dose of MMC. There was no change in the frequency of metaphase hepatocytes in any of the treatment groups compared with our facilitys background data. However, the frequency of proliferating hepatocytes, as assessed by Ki-67 positivity, was decreased at the highest dose, as was the frequency of MNHEPs. Therefore, the decreased induction of MNHEPs in the high-dose groups might be explained by suppression of hepatocyte cell division. In contrast, the frequency of micronucleated immature erythrocytes in the bone marrow significantly increased in a dose-dependent manner in all of the treatment groups in both study periods. Repeated treatment of MMC induced micronuclei in the liver. These results suggest that the novel RDLMN assay can be used to detect MMC genotoxicity in the liver.


Mutation Research | 2014

Chromosome loss caused by DNA fragmentation induced in main nuclei and micronuclei of human lymphoblastoid cells treated with colcemid.

Mika Yamamoto; Akihiro Wakata; Yoshinobu Aoki; Yoichi Miyamae; Seiji Kodama

Aneuploidy, a change in the number of chromosomes, plays an essential role in tumorigenesis. Our previous study demonstrated that a loss of a whole chromosome is induced in human lymphocytes by colcemid, a well-known aneugen. Here, to clarify the mechanism for colcemid-induced chromosome loss, we investigated the relationship between chromosome loss and DNA fragmentation in human lymphoblastoid cells treated with colcemid (an aneugen) compared with methyl methanesulfonate (MMS; a clastogen). We analyzed the number of fluorescence in situ hybridization (FISH) signals targeted for a whole chromosome 2 in cytokinesis-blocked binucleated TK6 cells and WTK-1 cells treated with colcemid and MMS, and concurrently detected DNA fragmentation by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results revealed that DNA fragmentation occurred in 60% of all binucleated TK6 cells harboring colcemid-induced chromosome loss (30% of micronuclei and 30% of main nuclei). DNA fragmentation was observed in colcemid-induced micronuclei containing a whole chromosome but not in MMS-induced micronuclei containing chromosome fragments. In contrast, colcemid-induced nondisjunction had no effect on induction of DNA fragmentation, suggesting that DNA fragmentation was triggered by micronuclei containing a whole chromosome but not by micronuclei containing chromosome fragments or nondisjunction. In addition, the frequency of binucleated cells harboring chromosome loss with DNA fragmentation in micronuclei or main nuclei was higher in wild-type p53 TK6 cells than in mutated-p53 WTK-1 cells treated with colcemid. Taken together, these present and previous results suggest that colcemid-induced chromosome loss is caused by DNA fragmentation, which is triggered by a micronucleus with a whole chromosome and controlled by the p53-dependent pathway.


Metabolomics | 2014

Metabolomic analysis of the effects of omeprazole and famotidine on aspirin-induced gastric injury

Kenichiro Takeuchi; Maki Ohishi; Keiko Endo; Kenichi Suzumura; Hitoshi Naraoka; Takeji Ohata; Jiro Seki; Yoichi Miyamae; Masashi Honma; Tomoyoshi Soga

Gastric mucosal ulceration and gastric hemorrhage are frequently associated with treatment by non-steroid anti-inflammatory drugs (NSAIDs); however, no convenient biomarker-based diagnostic methods for these adverse reactions are currently available, requiring the use of endoscopic evaluation. We recently reported five biomarker candidates in serum which predict gastric injury induced by NSAIDs in rats, but were unable to clarify the mechanism of change in the levels of these biomarker candidates. In this study, we performed capillary electrophoresis–mass spectrometry-based metabolomic profiling in stomach and serum from rats in which gastric ulcer was induced by aspirin and prevented by co-administration of omeprazole and famotidine. Results showed drug-induced decreases in the levels of citrate, cis-aconitate, succinate, 3-hydroxy butanoic acid, and O-acetyl carnitine in all animals administered aspirin. In contrast, aspirin-induced decreases in the level of 4-hydroxyproline were suppressed by co-administration of omeprazole and famotidine. We consider that these changes were due to the prevention of gastric ulcer and decrease in the amount of collagen in stomach tissue by omeprazole and famotidine, without prevention of the NSAID-induced depression of mitochondrial function. In addition, the decreases in 4-hydroxyproline in the stomach was also detectable as changes in the serum. While further study is needed to clarify limitations of indications and extrapolation to humans, this new serum biomarker candidate of gastric injury may be useful in the monitoring of NSAID-induced tissue damage.


Biomarker Insights | 2014

Hydroxyproline, a Serum Biomarker Candidate for Gastric Ulcer in Rats: A Comparison Study of Metabolic Analysis of Gastric Ulcer Models Induced by Ethanol, Stress, and Aspirin

Kenichiro Takeuchi; Maki Ohishi; Keiko Endo; Kenichi Suzumura; Hitoshi Naraoka; Takeji Ohata; Jiro Seki; Yoichi Miyamae; Masashi Honma; Tomoyoshi Soga

Gastrointestinal symptoms are a common manifestation of adverse drug effects. Non-steroid anti-inflammatory drugs (NSAIDs) are widely prescribed drugs that induce the serious side effect of gastric mucosal ulceration. Biomarkers for these side effects have not been identified and ulcers are now only detectable by endoscopy. We previously identified five metabolites as biomarker candidates for NSAID-induced gastric ulcer using capillary electrophoresis–mass spectrometry (CE–MS)-based metabolomic analysis of serum and stomach from rats. Here, to clarify mechanism of changes and limitations of indications of biomarker candidates, we performed CE–MS-based metabolomic profiling in stomach and serum from rats with gastric ulcers induced by ethanol, stress, and aspirin. The results suggest that a decrease in hydroxyproline reflects the induction of gastric injury and may be useful in identifying gastric ulcer induced by multiple causes. While extrapolation to humans requires further study, hydroxyproline can be a new serum biomarker of gastric injury regardless of cause.


Nephron Experimental Nephrology | 2013

Gene Expression Analysis Detected a Low Expression Level of C1s Gene in ICR-Derived Glomerulonephritis (ICGN) Mice

Kotaro Tamura; Kozue Uchio-Yamada; Noboru Manabe; Takahisa Noto; Rika Hirota; Akira Unami; Masahiro Matsumoto; Yoichi Miyamae

Background: ICR-derived glomerulonephritis (ICGN) strain is a novel inbred strain of mice with a hereditary nephrotic syndrome. Deletion mutation of tensin 2 (Tns2), a focal adhesion molecule, has been suggested to be responsible for nephrotic syndrome in ICGN mice; however, the existence of other associative factors has been suggested. Methods and Results: To identify additional associative factors and to better understand the onset mechanism of nephrotic syndrome in ICGN mice, we conducted a comprehensive gene expression analysis using DNA microarray. Immune-related pathways were markedly altered in ICGN mice kidney as compared with ICR mice. Furthermore, the gene expression level of complement component 1, s subcomponent (C1s), whose human homologue has been reported to associate with lupus nephritis, was markedly low in ICGN mouse kidney. Real-time quantitative reverse transcription-polymerase chain reaction confirmed a low expression level of C1s in ICGN mouse liver where the C1s protein is mainly synthesized. A high serum level of anti-dsDNA antibody and deposits of immune complexes were also detected in ICGN mice by enzyme-linked immunosorbent assay and immunohistochemical analyses, respectively. Conclusion: Our results suggest that the immune system, especially the complement system, is associated with nephrotic syndrome in ICGN mice. We identified a low expression level of C1s gene as an additional associative factor for nephrotic syndrome in ICGN mice. Further studies are needed to elucidate the role of the complement system in the onset of nephrotic syndrome in ICGN mice.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015

Prolonged rest period enables the detection of micronucleated hepatocytes in the liver of young adult rats after a single dose of diethylnitrosamine or mitomycin C.

Keisuke Shimada; Mika Yamamoto; Miyuki Takashima; Jiro Seki; Yoichi Miyamae; Akihiro Wakata

A repeated-dose micronucleus assay utilizing young adult rat hepatocytes was recently developed to evaluate the genotoxicity. In this assay, accumulation of micronucleated hepatocytes (MNHEPs) induced by repeated dosing of genotoxic chemicals is considered to be a key factor in the detection of micronuclei induction. Then, we hypothesized that the period following chemical exposure enable the detection of MNHEP induction in young adult rats, namely that MNHEPs can be generated from chromosomally damaged cells and accumulate following initiation of chemical exposure until sampling. We therefore measured MNHEP induction at 2 or 4 weeks after a single oral administration of 12.5, 50, or 100mg/kg of diethylnitrosamine (DEN) or an intraperitoneal administration of 0.5, 1.0, or 2.0mg/kg of mitomycin C (MMC) to young adult rats. Results showed a statistically significant, dose-dependent increase in the numbers of MNHEPs in DEN- or MMC-treated rats, indicating that prolonged rest period following a single dose of a genotoxic chemical enables the detection of MNHEP induction in the liver of young adult rats. From these results, a single oral administration of 50mg/kg of DEN with a 2- or 4- week rest period can be used as a positive control in repeated-dose liver micronucleus assays. This procedure is superior in terms of labor saving and animal welfare to repeated dosing of DEN.

Collaboration


Dive into the Yoichi Miyamae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge