Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoichi Takeuchi is active.

Publication


Featured researches published by Yoichi Takeuchi.


Journal of The American Society of Nephrology | 2009

SLCO4C1 Transporter Eliminates Uremic Toxins and Attenuates Hypertension and Renal Inflammation

Takafumi Toyohara; Takehiro Suzuki; Ryo Morimoto; Yasutoshi Akiyama; Tomokazu Souma; Hiromi O. Shiwaku; Yoichi Takeuchi; Eikan Mishima; Michiaki Abe; Masayuki Tanemoto; Satohiro Masuda; Hiroaki Kawano; Koji Maemura; Masaaki Nakayama; Hiroshi Sato; Tsuyoshi Mikkaichi; Hiroaki Yamaguchi; Shigefumi Fukui; Yoshihiro Fukumoto; Hiroaki Shimokawa; Ken-ichi Inui; Tetsuya Terasaki; Junichi Goto; Sadayoshi Ito; Takanori Hishinuma; Isabelle Rubera; Michel Tauc; Yoshiaki Fujii-Kuriyama; Hikaru Yabuuchi; Yoshinori Moriyama

Hypertension in patients with chronic kidney disease (CKD) strongly associates with cardiovascular events. Among patients with CKD, reducing the accumulation of uremic toxins may protect against the development of hypertension and progression of renal damage, but there are no established therapies to accomplish this. Here, overexpression of human kidney-specific organic anion transporter SLCO4C1 in rat kidney reduced hypertension, cardiomegaly, and inflammation in the setting of renal failure. In addition, SLCO4C1 overexpression decreased plasma levels of the uremic toxins guanidino succinate, asymmetric dimethylarginine, and the newly identified trans-aconitate. We found that xenobiotic responsive element core motifs regulate SLCO4C1 transcription, and various statins, which act as inducers of nuclear aryl hydrocarbon receptors, upregulate SLCO4C1 transcription. Pravastatin, which is cardioprotective, increased the clearance of asymmetric dimethylarginine and trans-aconitate in renal failure. These data suggest that drugs that upregulate SLCO4C1 may have therapeutic potential for patients with CKD.


Hypertension Research | 2010

Metabolomic profiling of uremic solutes in CKD patients

Takafumi Toyohara; Yasutoshi Akiyama; Takehiro Suzuki; Yoichi Takeuchi; Eikan Mishima; Masayuki Tanemoto; Ayako Momose; Naoko Toki; Hiroshi Sato; Masaaki Nakayama; Atsushi Hozawa; Ichiro Tsuji; Sadayoshi Ito; Tomoyoshi Soga; Takaaki Abe

Early detection and accurate monitoring of patients with chronic kidney disease (CKD) is likely to improve care and decrease the risk of cardiovascular and cerebrovascular diseases. As a new diagnostic tool, we examined the retention of uremic solutes as a simpler, more accurate method to assess renal function. To achieve this, we comprehensively evaluated these solutes in CKD patients. By capillary electrophoresis with mass spectrometry, we found 22 cations and 30 anions that accumulated significantly as the estimated glomerular filtration rate (eGFR) decreased. These compounds included 9 cations and 27 anions that were newly identified in this study. In contrast, we also found 7 cations (2 new) and 5 anions (all new) that decrease significantly as eGFR declines. We evaluated each substance for its suitability to detect early CKD stage. Compounds that are highly correlated with eGFR and whose plasma concentration changed in a manner approximated by the first-degree equation are excellent candidates for detecting CKD and identifying uremic toxins that might aggravate kidney function in the early stage of CKD. These results identify a number of uremic compounds, many of which are novel and which predict worsening renal function. These compounds provide diagnostic information and may be targets for therapies designed to treat the complications of CKD patients.


Journal of The American Society of Nephrology | 2015

Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD

Eikan Mishima; Shinji Fukuda; Hisato Shima; Akiyoshi Hirayama; Yasutoshi Akiyama; Yoichi Takeuchi; Noriko N. Fukuda; Takehiro Suzuki; Chitose Suzuki; Akinori Yuri; Koichi Kikuchi; Yoshihisa Tomioka; Sadayoshi Ito; Tomoyoshi Soga; Takaaki Abe

The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment.


Journal of The American Society of Nephrology | 2014

Conformational Change in Transfer RNA Is an Early Indicator of Acute Cellular Damage

Eikan Mishima; Chisako Inoue; Ryusuke Inoue; Koki Ito; Yusuke Suzuki; Daisuke Jinno; Yuri Tsukui; Yosuke Akamatsu; Masatake Araki; Kimi Araki; Ritsuko Shimizu; Haruka Shinke; Takehiro Suzuki; Yoichi Takeuchi; Hisato Shima; Yasutoshi Akiyama; Takafumi Toyohara; Chitose Suzuki; Yoshikatu Saiki; Teiji Tominaga; Shigehito Miyagi; Naoki Kawagisihi; Tomoyoshi Soga; Takayoshi Ohkubo; Ken Ichi Yamamura; Yutaka Imai; Satohiro Masuda; Venkata Sabbisetti; Takaharu Ichimura; David B. Mount

Tissue damage by oxidative stress is a key pathogenic mechanism in various diseases, including AKI and CKD. Thus, early detection of oxidative tissue damage is important. Using a tRNA-specific modified nucleoside 1-methyladenosine (m1A) antibody, we show that oxidative stress induces a direct conformational change in tRNA structure that promotes subsequent tRNA fragmentation and occurs much earlier than DNA damage. In various models of tissue damage (ischemic reperfusion, toxic injury, and irradiation), the levels of circulating tRNA derivatives increased rapidly. In humans, the levels of circulating tRNA derivatives also increased under conditions of acute renal ischemia, even before levels of other known tissue damage markers increased. Notably, the level of circulating free m1A correlated with mortality in the general population (n=1033) over a mean follow-up of 6.7 years. Compared with healthy controls, patients with CKD had higher levels of circulating free m1A, which were reduced by treatment with pitavastatin (2 mg/d; n=29). Therefore, tRNA damage reflects early oxidative stress damage, and detection of tRNA damage may be a useful tool for identifying organ damage and forming a clinical prognosis.


Journal of The American Society of Nephrology | 2016

Mitochonic Acid 5 Binds Mitochondria and Ameliorates Renal Tubular and Cardiac Myocyte Damage

Takehiro Suzuki; Hiroaki Yamaguchi; Motoi Kikusato; Osamu Hashizume; Satoru Nagatoishi; Akihiro Matsuo; Takeya Sato; Tai Kudo; Tetsuro Matsuhashi; Kazutaka Murayama; Yuki Ohba; Shun Watanabe; Shin-ichiro Kanno; Daichi Minaki; Hiroko Shinbo; Nobuyoshi Mori; Akinori Yuri; Miyuki Yokoro; Eikan Mishima; Hisato Shima; Yasutoshi Akiyama; Yoichi Takeuchi; Koichi Kikuchi; Takafumi Toyohara; Chitose Suzuki; Takaharu Ichimura; Jun-ichi Anzai; Masahiro Kohzuki; Nariyasu Mano; Shigeo Kure

Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.


Clinical and Experimental Nephrology | 2011

Metabolomic profiling of the autosomal dominant polycystic kidney disease rat model

Takafumi Toyohara; Takehiro Suzuki; Yasutoshi Akiyama; Daisuke Yoshihara; Yoichi Takeuchi; Eikan Mishima; Koichi Kikuchi; Chitose Suzuki; Masayuki Tanemoto; Sadayoshi Ito; Shizuko Nagao; Tomoyoshi Soga; Takaaki Abe

BackgroundAutosomal dominant polycystic kidney disease (ADPKD) is an inherited systemic disease characterized by renal cyst expansion, resulting in renal failure. With the progression of renal damage, the accumulation of uremic compounds is recently reported to subsequently cause further renal damage and hypertension. Finding uremic toxins and sensitive markers for detecting the early stage of ADPKD is necessary to clarify its pathophysiological process and to prevent its progression. The aim of this study was to analyze the profile of uremic retention solutes of ADPKD by capillary electrophoresis–mass spectrometry (CE-MS) using the Han:SPRD rat model.MethodsTwo hundred and ninety-seven cations and 190 anions were comprehensively analyzed by CE-MS in Han:SPRD rats and control rats.ResultsWe found 21 cations and 19 anions that accumulated significantly in the heterozygous (Cy/+) ADPKD rat model compared with control rats. Among the compounds, increases in 5-methyl-2′-deoxycytidine, glucosamine, ectoine, allantoate, α-hydroxybenzoate, phenaceturate and 3-phenylpropionate and decreases in 2-deoxycytidine, decanoate and 10-hydroxydecanoate were newly identified in the ADPKD Cy/+ rats.ConclusionWe identified uremic retention solutes in ADPKD Cy/+ rats. Compounds related to ADPKD could be useful markers for detecting the early stage of ADPKD.


Journal of Pharmaceutical Sciences | 2011

Transcriptional regulation of organic anion transporting polypeptide SLCO4C1 as a new therapeutic modality to prevent chronic kidney disease.

Takehiro Suzuki; Takafumi Toyohara; Yasutoshi Akiyama; Yoichi Takeuchi; Eikan Mishima; Chitose Suzuki; Sadayoshi Ito; Tomoyoshi Soga; Takaaki Abe

Uremic toxins accumulate in patients with chronic kidney diseases (CKDs) and cause further progression of renal damage and cardiovascular diseases. Recently, it was reported that some of the organic anion transporting polypeptides (OATPs) and the organic anion transporters (OATs) are involved in the renal elimination of uremic toxins. SLCO4C1 is the only OATP expressed at the basolateral side of proximal tubular cells in human kidney, and it mediates the excretion of uremic toxins. The overexpression of human SLCO4C1 in rat kidney promotes the renal excretion of uremic toxins and reduces hypertension, cardiomegaly, and renal inflammation in renal failure. Statins induce SLCO4C1 expression thorough transcriptional factor Aryl hydrocarbon receptor through binding of the xenobiotic responsive element at its promoter region. The administration of statin in a rat renal failure model facilitated the elimination of uremic toxins and mitigated organ damage. In addition, metabolomic analysis of rat renal failure models and patients with CKD by capillary electrophoresis-mass spectrometry is a useful method for identifying new uremic solutes and explores surrogate biomarkers for detecting the progression of early stage CKD.


PLOS ONE | 2013

Indoxyl Sulfate Down-Regulates SLCO4C1 Transporter through Up-Regulation of GATA3

Yasutoshi Akiyama; Koichi Kikuchi; Takehiro Suzuki; Yoichi Takeuchi; Eikan Mishima; Yasuaki Yamamoto; Ayako Ishida; Daiki Sugawara; Daisuke Jinno; Hisato Shima; Takafumi Toyohara; Chitose Suzuki; Tomokazu Souma; Takashi Moriguchi; Yoshihisa Tomioka; Sadayoshi Ito; Takaaki Abe

The accumulated uremic toxins inhibit the expression of various renal transporters and this inhibition may further reduce renal function and subsequently cause the accumulation of uremic toxins. However, the precise mechanism of the nephrotoxicity of uremic toxins on renal transport has been poorly understood. Here we report that indoxyl sulfate, one of the potent uremic toxins, directly suppresses the renal-specific organic anion transporter SLCO4C1 expression through a transcription factor GATA3. The promoter region of SLCO4C1 gene has several GATA motifs, and indoxyl sulfate up-regulated GATA3 mRNA and subsequently down-regulated SLCO4C1 mRNA. Overexpression of GATA3 significantly reduced SLCO4C1 expression, and silencing of GATA3 increased SLCO4C1 expression vice versa. Administration of indoxyl sulfate in rats reduced renal expression of slco4c1 and under this condition, plasma level of guanidinosuccinate, one of the preferable substrates of slco4c1, was significantly increased without changing plasma creatinine. Furthermore, in 5/6 nephrectomized rats, treatment with oral adsorbent AST-120 significantly decreased plasma indoxyl sulfate level and conversely increased the expression of slco4c1, following the reduction of plasma level of guanidinosuccinate. These data suggest that the removal of indoxyl sulfate and blocking its signal pathway may help to restore the SLCO4C1-mediated renal excretion of uremic toxins in CKD.


Toxins | 2012

A Metabolomic approach to clarifying the effect of AST-120 on 5/6 nephrectomized rats by capillary electrophoresis with mass spectrometry (CE-MS)

Yasutoshi Akiyama; Yoichi Takeuchi; Koichi Kikuchi; Eikan Mishima; Yasuaki Yamamoto; Chitose Suzuki; Takafumi Toyohara; Takehiro Suzuki; Atsushi Hozawa; Sadayoshi Ito; Tomoyoshi Soga; Takaaki Abe

The oral adsorbent AST-120 is composed of spherical carbon particles and has an adsorption ability for certain small-molecular-weight compounds that accumulate in patients with chronic kidney disease (CKD). So far, very few compounds are known to be adsorbed by AST-120 in vivo. To examine the effect of AST-120 in vivo, we comprehensively evaluated the plasma concentrations of 146 compounds (61 anions and 85 cations) in CKD model rats, with or without four weeks of treatment with AST-120. By capillary electrophoresis with mass spectrometry, we identified 6 anions and 17 cations that were significantly decreased by AST-120 treatment. In contrast, we also identified 2 cations that were significantly increased by AST-120. Among them, 4 anions, apart from indoxyl sulfate and hippurate, and 19 cations were newly identified in this study. The plasma levels of N-acetyl-neuraminate, 4-pyridoxate, 4-oxopentanoate, glycine, γ-guanidinobutyrate, N-γ-ethylglutamine, allantoin, cytosine, 5-methylcytosine and imidazole-4-acetate were significantly increased in the CKD model compared with the sham-operated group, and were significantly decreased by AST-120 treatment. Therefore, these 10 compounds could be added as uremic compounds that indicate the effect of AST-120 treatment. This study provides useful information not only for identifying the indicators of AST-120, but also for clarifying changes in the metabolic profile by AST-120 treatment in the clinical setting.


PLOS ONE | 2015

Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides

Eikan Mishima; Daisuke Jinno; Yasutoshi Akiyama; Kunihiko Itoh; Shinnosuke Nankumo; Hisato Shima; Koichi Kikuchi; Yoichi Takeuchi; Alaa Elkordy; Takehiro Suzuki; Kuniyasu Niizuma; Sadayoshi Ito; Yoshihisa Tomioka; Takaaki Abe

The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

Collaboration


Dive into the Yoichi Takeuchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge