Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoichiro Fukao is active.

Publication


Featured researches published by Yoichiro Fukao.


Biochemical Journal | 2009

Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase

Aiko Sato; Yuki Sato; Yoichiro Fukao; Masayuki Fujiwara; Taishi Umezawa; Kazuo Shinozaki; Takao Hibi; Mitsutaka Taniguchi; Hiroshi Miyake; Derek B. Goto; Nobuyuki Uozumi

The Arabidopsis thaliana K+ channel KAT1 has been suggested to have a key role in mediating the aperture of stomata pores on the surface of plant leaves. Although the activity of KAT1 is thought to be regulated by phosphorylation, the endogenous pathway and the primary target site for this modification remained unknown. In the present study, we have demonstrated that the C-terminal region of KAT1 acts as a phosphorylation target for the Arabidopsis calcium-independent ABA (abscisic acid)-activated protein kinase SnRK2.6 (Snf1-related protein kinase 2.6). This was confirmed by LC-MS/MS (liquid chromatography tandem MS) analysis, which showed that Thr306 and Thr308 of KAT1 were modified by phosphorylation. The role of these specific residues was examined by single point mutations and measurement of KAT1 channel activities in Xenopus oocyte and yeast systems. Modification of Thr308 had minimal effect on KAT1 activity. On the other hand, modification of Thr306 reduced the K+ transport uptake activity of KAT1 in both systems, indicating that Thr306 is responsible for the functional regulation of KAT1. These results suggest that negative regulation of KAT1 activity, required for stomatal closure, probably occurs by phosphorylation of KAT1 Thr306 by the stress-activated endogenous SnRK2.6 protein kinase.


The Plant Cell | 2009

Efficient Operation of NAD(P)H Dehydrogenase Requires Supercomplex Formation with Photosystem I via Minor LHCI in Arabidopsis

Lianwei Peng; Yoichiro Fukao; Masayuki Fujiwara; Tsuneaki Takami; Toshiharu Shikanai

In higher plants, the chloroplast NAD(P)H dehydrogenase (NDH) complex mediates photosystem I (PSI) cyclic and chlororespiratory electron transport. We reported previously that NDH interacts with the PSI complex to form a supercomplex (NDH-PSI). In this study, NDH18 and FKBP16-2 (FK506 Binding Protein 16-2), detected in the NDH-PSI supercomplex by mass spectrometry, were shown to be NDH subunits by the analysis of their knockdown lines. On the basis of extensive mutant characterization, we propose a structural model for chloroplast NDH, whereby NDH is divided into four subcomplexes. The subcomplex A and membrane subcomplex are conserved in cyanobacteria, but the subcomplex B and lumen subcomplex are specific to chloroplasts. Two minor light-harvesting complex I proteins, Lhca5 and Lhca6, were required for the full-size NDH-PSI supercomplex formation. Similar to crr pgr5 double mutants that completely lack cyclic electron flow activity around PSI, the lhca6 pgr5 double mutant exhibited a severe defect in growth. Consistent with the impaired NDH activity, photosynthesis was also severely affected in mature leaves of lhca6 pgr5. We conclude that chloroplast NDH became equipped with the novel subcomplexes and became associated with PSI during the evolution of land plants, and this process may have facilitated the efficient operation of NDH.


FEBS Letters | 2005

MDR‐like ABC transporter AtPGP4 is involved in auxin‐mediated lateral root and root hair development

Diana Santelia; Vincent Vincenzetti; Elisa Azzarello; Lucien Bovet; Yoichiro Fukao; Stefano Mancuso; Enrico Martinoia; Markus Geisler

Here we show that related isoform AtPGP4 is expressed predominantly during early root development. AtPGP4 loss‐of‐function plants reveal enhanced lateral root initiation and root hair lengths both known to be under the control of auxin. Further, atpgp4 plants show altered sensitivities toward auxin and the auxin transport inhibitor, NPA. Finally, mutant roots reveal elevated free auxin levels and reduced auxin transport capacities. These results together with yeast growth assays suggest a direct involvement of AtPGP4 in auxin transport processes controlling lateral root and root hair development.


The Plant Cell | 2010

Identification and Characterization of Nuclear Pore Complex Components in Arabidopsis thaliana

Kentaro Tamura; Yoichiro Fukao; Masaaki Iwamoto; Tokuko Haraguchi; Ikuko Hara-Nishimura

Interactive proteomics technology was used to identify Arabidopsis nucleoporins, which are components of the nuclear pore complex (NPC). Nucleoporin domain organization is similar in plants, vertebrates, and yeast. This finding suggests that most NPC structures are conserved throughout eukaryotes. The nuclear pore complex (NPC) facilitates nucleocytoplasmic transport, a crucial process for various cellular activities. The NPC comprises ~30 nucleoporins and is well characterized in vertebrates and yeast. However, only eight plant nucleoporins have been identified, and little information is available about the complete molecular structure of plant NPCs. In this study, an interactive proteomic approach was used to identify Arabidopsis thaliana nucleoporins. A series of five cycles of interactive proteomic analysis was performed using green fluorescent protein (GFP)-tagged nucleoporins. The identified nucleoporins were then cloned and subcellular localization analyses were performed. We found that the plant NPC contains at least 30 nucleoporins, 22 of which had not been previously annotated. Surprisingly, plant nucleoporins shared a similar domain organization to their vertebrate (human) and yeast (Saccharomyces cerevisiae) counterparts. Moreover, the plant nucleoporins exhibited higher sequence homology to vertebrate nucleoporins than to yeast nucleoporins. Plant NPCs lacked seven components (NUCLEOPORIN358 [Nup358], Nup188, Nup153, Nup45, Nup37, NUCLEAR DIVISION CYCLE1, and PORE MEMBRANE PROTEIN OF 121 kD) that were present in vertebrate NPCs. However, plants possessed a nucleoporin, Nup136/Nup1, that contained Phe-Gly repeats, and sequence analysis failed to identify a vertebrate homolog for this protein. Interestingly, Nup136-GFP showed greater mobility on the nuclear envelope than did other nucleoporins, and a Nup136/Nup1 deficiency caused various defects in plant development. These findings provide valuable new information about plant NPC structure and function.


The Plant Cell | 2011

An Src Homology 3 Domain-Like Fold Protein Forms a Ferredoxin Binding Site for the Chloroplast NADH Dehydrogenase-Like Complex in Arabidopsis

Hiroshi Yamamoto; Lianwei Peng; Yoichiro Fukao; Toshiharu Shikanai

Chloroplast NAD(P)H dehydrogenase (NDH) has been thought to function as an NAD(P)H:plastoquinone oxidoreductase in cyclic electron transport around photosystem I, although its electron donor binding site was unclear. This study indicates that CRR31, a novel NDH subunit, serves in the high-affinity binding of ferredoxin to NDH and proposes that chloroplast NDH is ferredoxin:plastoquinone oxidoreductase. Some subunits of chloroplast NAD(P)H dehydrogenase (NDH) are related to those of the respiratory complex I, and NDH mediates photosystem I (PSI) cyclic electron flow. Despite extensive surveys, the electron donor and its binding subunits have not been identified. Here, we identified three novel components required for NDH activity. CRRJ and CRRL are J- and J-like proteins, respectively, and are components of NDH subcomplex A. CRR31 is an Src homology 3 domain-like fold protein, and its C-terminal region may form a tertiary structure similar to that of PsaE, a ferredoxin (Fd) binding subunit of PSI, although the sequences are not conserved between CRR31 and PsaE. Although CRR31 can accumulate in thylakoids independently of NDH, its accumulation requires CRRJ, and CRRL accumulation depends on CRRJ and NDH. CRR31 was essential for the efficient operation of Fd-dependent plastoquinone reduction in vitro. The phenotype of crr31 pgr5 suggested that CRR31 is required for NDH activity in vivo. We propose that NDH functions as a PGR5-PGRL1 complex-independent Fd:plastoquinone oxidoreductase in chloroplasts and rename it the NADH dehydrogenase-like complex.


Plant Journal | 2008

A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana

Takashi Shimada; Tomoo Shimada; Hideyuki Takahashi; Yoichiro Fukao; Ikuko Hara-Nishimura

SUMMARY Oil bodies in seeds of higher plants are surrounded with oleosins. Here we demonstrate a novel role for oleosins in protecting oilseeds against freeze/thaw-induced damage of their cells. We detected four oleosins in oil bodies isolated from seeds of Arabidopsis thaliana, and designated them OLE1, OLE2, OLE3 and OLE4 in decreasing order of abundance in the seeds. For reverse genetics, we isolated oleosin-deficient mutants (ole1, ole2, ole3 and ole4) and generated three double mutants (ole1 ole2, ole1 ole3 and ole2 ole3). Electron microscopy showed an inverse relationship between oil body sizes and total oleosin levels. The double mutant ole1 ole2, which had the lowest levels of oleosins, had irregular enlarged oil-containing structures throughout the seed cells. Germination rates were positively associated with oleosin levels, suggesting that defects in germination are related to the expansion of oil bodies due to oleosin deficiency. We found that freezing followed by imbibition at 4 degrees C abolished seed germination of single mutants (ole1, ole2 and ole3), which germinated normally without freezing treatment. The treatment accelerated the fusion of oil bodies and the abnormal-positioning and deformation of nuclei in ole1 seeds, which caused seed mortality. In contrast, ole1 seeds that had undergone freezing treatment germinated normally when incubated at 22 degrees C instead of 4 degrees C, because degradation of oils abolished the acceleration of fusion of oil bodies during imbibition. Taken together, our findings suggest that oleosins increase the viability of over-wintering oilseeds by preventing abnormal fusion of oil bodies during imbibition in the spring.


Journal of Biological Chemistry | 2007

Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana.

Kenji Yamada; Yoichiro Fukao; Makoto Hayashi; Mitsue Fukazawa; Iku Suzuki; Mikio Nishimura

Plant survival requires the ability to acclimate to heat. When plants are subjected to heat shock, the expression of various genes is induced, and the plants become tolerant of higher temperatures. We found that transient treatment with geldanamycin and radicicol, two heat shock protein 90 (HSP90) inhibitors, induced heat-inducible genes and heat acclimation in Arabidopsis thaliana seedlings. Heat shock reduced the activity of exogenously expressed glucocorticoid receptor (GR). Since GR activity depends on HSP90, this suggests that heat shock reduces cytosolic HSP90 activity in vivo. Microarray analysis revealed that many of the genes that are up-regulated by both heat shock and HSP90 inhibitors are involved in protein folding and degradation, suggesting that the activation of a protein maintenance system is a crucial part of this response. Most of these genes have heat shock response element-like motifs in their promoters, which suggests that heat shock transcription factor (HSF) is involved in the response to HSP90 inhibition. Several HSF genes are expressed constitutively in A. thaliana, including AtHsfA1d. Recombinant AtHsfA1d protein recognizes the heat shock response element motif and interacts with A. thaliana cytosolic HSP90, HSP90.2. Overexpression of a dominant negative form of HSP90.2 induced the heat-inducible gene. Thus, it appears that in the absence of heat shock, cytosolic HSP90 negatively regulates heat-inducible genes by actively suppressing HSF function. Upon heat shock, cytosolic HSP90 is transiently inactivated, which may lead to HSF activation.


Plant and Cell Physiology | 2009

Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation.

Anzu Minami; Masayuki Fujiwara; Akari Furuto; Yoichiro Fukao; Tetsuro Yamashita; Masaharu Kamo; Yukio Kawamura; Matsuo Uemura

Microdomains in the plasma membrane (PM) have been proposed to be involved in many important cellular events in plant cells. To understand the role of PM microdomains in plant cold acclimation, we isolated the microdomains as detergent-resistant plasma membrane fractions (DRMs) from Arabidopsis seedlings and compared lipid and protein compositions before and after cold acclimation. The DRM was enriched in sterols and glucocerebrosides, and the proportion of free sterols in the DRM increased after cold acclimation. The protein-to-lipid ratio in the DRM was greater than that in the total PM fraction. The protein amount recovered in DRMs decreased gradually during cold acclimation. Cold acclimation further resulted in quantitative changes in DRM protein profiles. Subsequent mass spectrometry and Western blot analyses revealed that P-type H(+)-ATPases, aquaporins and endocytosis-related proteins increased and, conversely, tubulins, actins and V-type H(+)-ATPase subunits decreased in DRMs during cold acclimation. Functional categorization of cold-responsive proteins in DRMs suggests that plant PM microdomains function as platforms of membrane transport, membrane trafficking and cytoskeleton interaction. These comprehensive changes in microdomains may be associated with cold acclimation of Arabidopsis.


Current Biology | 2013

Myosin XI-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in Arabidopsis.

Kentaro Tamura; Kosei Iwabuchi; Yoichiro Fukao; Maki Kondo; Keishi Okamoto; Haruko Ueda; Mikio Nishimura; Ikuko Hara-Nishimura

The cell nucleus communicates with the cytoplasm through a nucleocytoplasmic linker that maintains the shape of the nucleus and mediates its migration. In contrast to animal nuclei, which are moved by motor proteins (kinesins and dyneins) along the microtubule cytoskeleton, plant nuclei move rapidly and farther along an actin filament cytoskeleton. This implies that plants use a distinct nucleocytoplasmic linker for nuclear dynamics, although its molecular identity is unknown. Here, we describe a new type of nucleocytoplasmic linker consisting of a myosin motor and nuclear membrane proteins. In the Arabidopsis thaliana mutant kaku1, nuclear movement was impaired and the nuclear envelope was abnormally invaginated. The responsible gene was identified as myosin XI-i, which encodes a plant-specific myosin. Myosin XI-i is specifically localized on the nuclear membrane, where it physically interacts with the outer-nuclear-membrane proteins WIT1 and WIT2. Both WIT proteins are required for anchoring myosin XI-i to the nuclear membrane and for nuclear movement. A striking feature of plant cells is dark-induced nuclear positioning in mesophyll cells. A deficiency of either myosin XI-i or WIT proteins diminished dark-induced nuclear positioning. The unique nucleocytoplasmic linkage in plants might enable rapid nuclear positioning in response to environmental stimuli.


Plant Physiology | 2011

iTRAQ Analysis Reveals Mechanisms of Growth Defects due to Excess Zinc in Arabidopsis

Yoichiro Fukao; Ali Ferjani; Rie Tomioka; Nahoko Nagasaki; Rie Kurata; Yuka Nishimori; Masayuki Fujiwara; Masayoshi Maeshima

The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H+-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role.

Collaboration


Dive into the Yoichiro Fukao's collaboration.

Top Co-Authors

Avatar

Masayuki Fujiwara

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kousuke Hanada

Kyushu Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yube Yamaguchi

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge