Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoichiro Iwakura is active.

Publication


Featured researches published by Yoichiro Iwakura.


Journal of Immunology | 2006

IL-17 Plays an Important Role in the Development of Experimental Autoimmune Encephalomyelitis

Yutaka Komiyama; Susumu Nakae; Taizo Matsuki; Aya Nambu; Harumichi Ishigame; Shigeru Kakuta; Katsuko Sudo; Yoichiro Iwakura

IL-17 is a proinflammatory cytokine that activates T cells and other immune cells to produce a variety of cytokines, chemokines, and cell adhesion molecules. This cytokine is augmented in the sera and/or tissues of patients with contact dermatitis, asthma, and rheumatoid arthritis. We previously demonstrated that IL-17 is involved in the development of autoimmune arthritis and contact, delayed, and airway hypersensitivity in mice. As the expression of IL-17 is also augmented in multiple sclerosis, we examined the involvement of this cytokine in these diseases using IL-17−/− murine disease models. We found that the development of experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis, was significantly suppressed in IL-17−/− mice; these animals exhibited delayed onset, reduced maximum severity scores, ameliorated histological changes, and early recovery. T cell sensitization against myelin oligodendrocyte glycoprotein was reduced in IL-17−/− mice upon sensitization. The major producer of IL-17 upon treatment with myelin digodendrocyte glycopritein was CD4+ T cells rather than CD8+ T cells, and adoptive transfer of IL-17−/− CD4+ T cells inefficiently induced EAE in recipient mice. Notably, IL-17-producing T cells were increased in IFN-γ−/− cells, while IFN-γ-producing cells were increased in IL-17−/− cells, suggesting that IL-17 and IFN-γ mutually regulate IFN-γ and IL-17 production. These observations indicate that IL-17 rather than IFN-γ plays a crucial role in the development of EAE.


Journal of Immunology | 2003

Suppression of Immune Induction of Collagen-Induced Arthritis in IL-17-Deficient Mice

Susumu Nakae; Aya Nambu; Katsuko Sudo; Yoichiro Iwakura

Interleukin-17 is a T cell-derived proinflammatory cytokine. This cytokine is suspected to be involved in the development of rheumatoid arthritis (RA) because this cytokine expression is augmented in synovial tissues of RA patients. The pathogenic roles of IL-17 in the development of RA, however, still remain to be elucidated. In this study, effects of IL-17 deficiency on collagen-induced arthritis (CIA) model were examined using IL-17-deficient mice (IL-17−/− mice). We found that CIA was markedly suppressed in IL-17−/− mice. IL-17 was responsible for the priming of collagen-specific T cells and collagen-specific IgG2a production. Thus, these observations suggest that IL-17 plays a crucial role in the development of CIA by activating autoantigen-specific cellular and humoral immune responses.


Journal of Experimental Medicine | 2006

Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction.

Kojiro Sato; Ayako Suematsu; Kazuo Okamoto; Akira Yamaguchi; Yasuyuki Morishita; Yuho Kadono; Tatsuhiko Kodama; Shizuo Akira; Yoichiro Iwakura; Daniel J. Cua; Hiroshi Takayanagi

In autoimmune arthritis, traditionally classified as a T helper (Th) type 1 disease, the activation of T cells results in bone destruction mediated by osteoclasts, but how T cells enhance osteoclastogenesis despite the anti-osteoclastogenic effect of interferon (IFN)-γ remains to be elucidated. Here, we examine the effect of various Th cell subsets on osteoclastogenesis and identify Th17, a specialized inflammatory subset, as an osteoclastogenic Th cell subset that links T cell activation and bone resorption. The interleukin (IL)-23–IL-17 axis, rather than the IL-12–IFN-γ axis, is critical not only for the onset phase, but also for the bone destruction phase of autoimmune arthritis. Thus, Th17 is a powerful therapeutic target for the bone destruction associated with T cell activation.


Nature Medicine | 2008

IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia

Shean J. Aujla; Yvonne R. Chan; Mingquan Zheng; Mingjian Fei; David J Askew; Derek A. Pociask; Todd A. Reinhart; Florencia McAllister; Jennifer Edeal; Kristi Gaus; Shahid Husain; James L. Kreindler; Patricia J. Dubin; Joseph M. Pilewski; Mike M. Myerburg; Carol A Mason; Yoichiro Iwakura; Jay K. Kolls

Emerging evidence supports the concept that T helper type 17 (TH17) cells, in addition to mediating autoimmunity, have key roles in mucosal immunity against extracellular pathogens. Interleukin-22 (IL-22) and IL-17A are both effector cytokines produced by the TH17 lineage, and both were crucial for maintaining local control of the Gram-negative pulmonary pathogen, Klebsiella pneumoniae. Although both cytokines regulated CXC chemokines and granulocyte colony–stimulating factor production in the lung, only IL-22 increased lung epithelial cell proliferation and increased transepithelial resistance to injury. These data support the concept that the TH17 cell lineage and its effector molecules have evolved to effect host defense against extracellular pathogens at mucosal sites.


Immunity | 2002

Antigen-Specific T Cell Sensitization Is Impaired in IL-17-Deficient Mice, Causing Suppression of Allergic Cellular and Humoral Responses

Susumu Nakae; Yutaka Komiyama; Aya Nambu; Katsuko Sudo; Michiko Iwase; Ikuo Homma; Kenji Sekikawa; Masahide Asano; Yoichiro Iwakura

Interleukin-17 (IL-17) is a proinflammatory cytokine produced by T cells. The involvement of IL-17 in human diseases has been suspected because of its detection in sera from asthmatic patients and synovial fluids from arthritic patients. In this study, we generated IL-17-deficient mice and investigated the role of IL-17 in various disease models. We found that contact, delayed-type, and airway hypersensitivity responses, as well as T-dependent antibody production, were significantly reduced in the mutant mice, while IL-17 deficiency of donor T cells did not affect acute graft-versus-host reaction. The results suggest that impaired responses were caused by the defects of allergen-specific T cell activation. Our findings indicate that IL-17 plays an important role in activating T cells in allergen-specific T cell-mediated immune responses.


Nature Immunology | 2002

Essential role of MD-2 in LPS responsiveness and TLR4 distribution

Yoshinori Nagai; Sachiko Akashi; Masakazu Nagafuku; Masato Ogata; Yoichiro Iwakura; Shizuo Akira; Toshio Kitamura; Atsushi Kosugi; Masao Kimoto; Kensuke Miyake

Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. We show here that MD-2−/− mice do not respond to LPS, do survive endotoxic shock but are susceptible to Salmonella typhimurium infection. We found that in MD-2−/− embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR4 was distributed at the leading edge surface of cells in wild-type embryonic fibroblasts. Thus, MD-2 is essential for correct intracellular distribution and LPS-recognition of TLR4.


Journal of Clinical Investigation | 2006

The IL-23/IL-17 axis in inflammation.

Yoichiro Iwakura; Harumichi Ishigame

IL-23 induces the differentiation of naive CD4(+) T cells into highly pathogenic helper T cells (Th17/Th(IL-17)) that produce IL-17, IL-17F, IL-6, and TNF-alpha, but not IFN-gamma and IL-4. Two studies in this issue of the JCI demonstrate that blocking IL-23 or its downstream factors IL-17 and IL-6, but not the IL-12/IFN-gamma pathways, can significantly suppress disease development in animal models of inflammatory bowel disease and MS (see the related articles beginning on pages 1310 and 1317). These studies suggest that the IL-23/IL-17 pathway may be a novel therapeutic target for the treatment of chronic inflammatory diseases.


Immunity | 2009

Differential Roles of Interleukin-17A and -17F in Host Defense against Mucoepithelial Bacterial Infection and Allergic Responses

Harumichi Ishigame; Shigeru Kakuta; Takeshi Nagai; Motohiko Kadoki; Aya Nambu; Yutaka Komiyama; Noriyuki Fujikado; Yuko Tanahashi; Aoi Akitsu; Hayato Kotaki; Katsuko Sudo; Susumu Nakae; Chihiro Sasakawa; Yoichiro Iwakura

Interleukin-17A (IL-17A) is a cytokine produced by T helper 17 (Th17) cells and plays important roles in the development of inflammatory diseases. Although IL-17F is highly homologous to IL-17A and binds the same receptor, the functional roles of this molecule remain largely unknown. Here, we demonstrated with Il17a(-/-), Il17f(-/-), and Il17a(-/-)Il17f(-/-) mice that IL-17F played only marginal roles, if at all, in the development of delayed-type and contact hypersensitivities, autoimmune encephalomyelitis, collagen-induced arthritis, and arthritis in Il1rn(-/-) mice. In contrast, both IL-17F and IL-17A were involved in host defense against mucoepithelial infection by Staphylococcus aureus and Citrobacter rodentium. IL-17A was produced mainly in T cells, whereas IL-17F was produced in T cells, innate immune cells, and epithelial cells. Although only IL-17A efficiently induced cytokines in macrophages, both cytokines activated epithelial innate immune responses. These observations indicate that IL-17A and IL-17F have overlapping yet distinct roles in host immune and defense mechanisms.


Nature | 2013

Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome

Shin Yoshimoto; Tze Mun Loo; Koji Atarashi; Hiroaki Kanda; Seidai Sato; Seiichi Oyadomari; Yoichiro Iwakura; Kenshiro Oshima; Hidetoshi Morita; Masahira Hattori; Kenya Honda; Yuichi Ishikawa; Eiji Hara; Naoko Ohtani

Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer. As the worldwide obesity epidemic has shown no signs of abating, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP) has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs), which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer or depleted of senescent HSCs, indicating that the DCA–SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.


Proceedings of the National Academy of Sciences of the United States of America | 2003

IL-1 is required for tumor invasiveness and angiogenesis

Elena Voronov; Dror S. Shouval; Yakov Krelin; Emanuela Cagnano; Daniel Benharroch; Yoichiro Iwakura; Charles A. Dinarello; Ron N. Apte

Here, we describe that microenvironmental IL-1β and, to a lesser extent, IL-1α are required for in vivo angiogenesis and invasiveness of different tumor cells. In IL-1β knockout (KO) mice, local tumor or lung metastases of B16 melanoma cells were not observed compared with WT mice. Angiogenesis was assessed by the recruitment of blood vessel networks into Matrigel plugs containing B16 melanoma cells; vascularization of the plugs was present in WT mice, but was absent in IL-1β KO mice. The addition of exogenous IL-1 into B16-containing Matrigel plugs in IL-1β KO mice partially restored the angiogenic response. Moreover, the incorporation of IL-1 receptor antagonist to B16-containing plugs in WT mice inhibited the ingrowth of blood vessel networks into Matrigel plugs. In IL-1α KO mice, local tumor development and induction of an angiogenic response in Matrigel plugs was less pronounced than in WT mice, but significantly higher than in IL-1β KO mice. These effects of host-derived IL-1α and IL-1β were not restricted to the melanoma model, but were also observed in DA/3 mammary and prostate cancer cell models. In addition to the in vivo findings, IL-1 contributed to the production of vascular endothelial cell growth factor and tumor necrosis factor in cocultures of peritoneal macrophages and tumor cells. Host-derived IL-1 seems to control tumor angiogenesis and invasiveness. Furthermore, the anti-angiogenic effects of IL-1 receptor antagonist, shown here, suggest a possible therapeutic role in cancer, in addition to its current use in rheumatoid arthritis.

Collaboration


Dive into the Yoichiro Iwakura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuko Sudo

Tokyo Medical University

View shared research outputs
Top Co-Authors

Avatar

Reiko Horai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naohito Ohno

Tokyo University of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge