Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoichiro Tamori is active.

Publication


Featured researches published by Yoichiro Tamori.


PLOS Biology | 2010

Involvement of Lgl and Mahjong/VprBP in Cell Competition

Yoichiro Tamori; Carl Uli Bialucha; Ai-Guo Tian; Mihoko Kajita; Yi-Chun Huang; Mark Norman; Nicholas Harrison; John S. Poulton; Kenzo Ivanovitch; Lena Disch; Tao Liu; Wu-Min Deng; Yasuyuki Fujita

Mahjong is a novel Lethal giant larvae-binding protein that plays a vital role in cell competition in both flies and mammals.


Journal of Genetics and Genomics | 2011

Cell competition and its implications for development and cancer

Yoichiro Tamori; Wu-Min Deng

Cell competition is a struggle for existence between cells in heterogeneous tissues of multicellular organisms. Loser cells, which die during cell competition, are normally viable when grown only with other loser cells, but when mixed with winner cells, they are at a growth disadvantage and undergo apoptosis. Intriguingly, several recent studies have revealed that cells bearing mutant tumor-suppressor genes, which show overgrowth and tumorigenesis in a homotypic situation, are frequently eliminated, through cell competition, from tissues in which they are surrounded by wild-type cells. Here, we focus on the regulation of cellular competitiveness and the mechanism of cell competition as inferred from two different categories of mutant cells: (1) slower-growing cells and (2) structurally defective cells. We also discuss the possible role of cell competition as an intrinsic homeostasis system through which normal cells sense and remove aberrant cells, such as precancerous cells, to maintain the integrity and normal development of tissues and organs.


PLOS Biology | 2016

Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment.

Yoichiro Tamori; Emiko Suzuki; Wu-Min Deng

Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this “tumor hotspot” where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the “tumor coldspot” nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism.


Oecologia | 2009

Maternal effects on phenotypic plasticity in larvae of the salamander Hynobius retardatus

Hirofumi Michimae; Kinya Nishimura; Yoichiro Tamori; Masami Wakahara

Maternal effects are widespread and influence a variety of traits, for example, life history strategies, mate choice, and capacity to avoid predation. Therefore, maternal effects may also influence phenotypic plasticity of offspring, but few studies have addressed the relationship between maternal effects and phenotypic plasticity of offspring. We examined the relationship between a maternally influenced trait (egg size) and the phenotypic plasticity of the induction rate of the broad-headed morph in the salamander Hynobius retardatus. The relationship between egg size and the induction of the broad-headed morph was tested across experimental crowding conditions (densities of low conspecifics, high conspecifics, and high heterospecific anuran), using eggs and larvae from eight natural populations with different larval densities of conspecifics and heterospecifics. The broad-headed morph has a large mouth that enables it to consume either conspecifics or heterospecifics, and this ability gives survival advantages over the normal morph. We have determined that there is phenotypic plasticity in development, as shown by an increase in the frequency of broad-headed morph in response to an increase in the density of conspecifics and heterospecifics. This reaction norm differed between populations. We also determined that the frequency of the broad-headed morph is affected by egg size in which larger egg size resulted in expression of the broad-headed morph. Furthermore, we determined that selection acting on the propensity to develop the broad-headed morph has produced a change in egg size. Lastly, we found that an increase in egg size alters the reaction norm to favor development of the broad-headed morph. For example, an equal change in experimental density produces a greater change in the frequency of the broad-headed morph in larvae developing from large eggs than it does in larvae developing from small eggs. Population differences in plasticity might be the results of differences in egg size between populations, which is caused by the adaptive integration of the plasticity and egg size. Phenotypic plasticity can not evolve independently of maternal effects.


Trends in Cell Biology | 2014

Compensatory cellular hypertrophy: the other strategy for tissue homeostasis

Yoichiro Tamori; Wu-Min Deng

Metazoan tissues have the ability to maintain tissue size and morphology while eliminating aberrant or damaged cells. In the tissue homeostasis system, cell division is the primary strategy cells use not only to increase tissue size during development but also to compensate for cell loss in tissue repair. Recent studies in Drosophila, however, have shown that cells in postmitotic tissues undergo hypertrophic growth without division, contributing to tissue repair as well as organ development. Indeed, similar compensatory cellular hypertrophy (CCH) can be observed in different contexts such as mammalian hepatocytes or corneal endothelial cells. Here we highlight these findings and discuss the underlying mechanisms of CCH, which is likely an evolutionarily conserved strategy for homeostatic tissue growth in metazoans.


Developmental Biology | 2014

Regulation of broad by the Notch pathway affects timing of follicle cell development

Dongyu Jia; Yoichiro Tamori; George Pyrowolakis; Wu-Min Deng

During Drosophila oogenesis, activation of Notch signaling in the follicular epithelium (FE) around stage 6 of oogenesis is essential for entry into the endocycle and a series of other changes such as cell differentiation and migration of subsets of the follicle cells. Notch induces the expression of zinc finger protein Hindsight and suppresses homeodomain protein Cut to regulate the mitotic/endocycle (ME) switch. Here we report that broad (br), encoding a small group of zinc-finger transcription factors resulting from alternative splicing, is a transcriptional target of Notch nuclear effector Suppressor of Hairless (Su(H)). The early pattern of Br in the FE, uniformly expressed except in the polar cells, is established by Notch signaling around stage 6, through the binding of Su(H) to the br early enhancer (brE) region. Mutation of the Su(H) binding site leads to a significant reduction of brE reporter expression in follicle cells undergoing the endocycle. Chromatin immunoprecipitation results further confirm Su(H) binding to the br early enhancer. Consistent with its expression in follicle cells during midoogenesis, loss of br function results in a delayed entry into the endocycle. Our findings suggest an important role of br in the timing of follicle cell development, and its transcriptional regulation by the Notch pathway.


Developmental Biology | 2013

Efficient EGFR signaling and dorsal-ventral axis patterning requires syntaxin dependent Gurken trafficking.

Ai-Guo Tian; Yoichiro Tamori; Yi-Chun Huang; Natalia Toledo Melendez; Wu-Min Deng

Vesicle trafficking plays a crucial role in the establishment of cell polarity in various cellular contexts, including axis-pattern formation in the developing egg chamber of Drosophila. The EGFR ligand, Gurken (Grk), is first localized at the posterior of young oocytes for anterior-posterior axis formation and later in the dorsal anterior region for induction of the dorsal-ventral (DV) axis, but regulation of Grk localization by membrane trafficking in the oocyte remains poorly understood. Here, we report that Syntaxin 1A (Syx1A) is required for efficient trafficking of Grk protein for DV patterning. We show that Syx1A is associated with the Golgi membrane and is required for the transportation of Grk-containing vesicles along the microtubules to their dorsal anterior destination in the oocyte. Our studies reveal that the Syx1A dependent trafficking of Grk protein is required for efficient EGFR signaling during DV patterning.


Oncotarget | 2017

Systematic analysis reveals tumor-enhancing and -suppressing microRNAs in Drosophila epithelial tumors

Zhiqiang Shu; Yi-Chun Huang; William H. Palmer; Yoichiro Tamori; Gengqiang Xie; Hui Wang; Nan Liu; Wu-Min Deng

Despite their emergence as an important class of noncoding RNAs involved in cancer cell transformation, invasion, and migration, the precise role of microRNAs (miRNAs) in tumorigenesis remains elusive. To gain insights into how miRNAs contribute to primary tumor formation, we conducted an RNA sequencing (RNA-Seq) analysis of Drosophila wing disc epithelial tumors induced by knockdown of a neoplastic tumor-suppressor gene (nTSG) lethal giant larvae (lgl), combined with overexpression of an active form of oncogene Ras (RasV12), and identified 51 mature miRNAs that changed significantly in tumorous discs. Followed by in vivo tumor enhancer and suppressor screens in sensitized genetic backgrounds, we identified 10 tumor-enhancing (TE) miRNAs and 11 tumor-suppressing (TS) miRNAs that contributed to the nTSG defect-induced tumorigenesis. Among these, four TE and three TS miRNAs have human homologs. From this study, we also identified 29 miRNAs that individually had no obvious role in enhancing or alleviating tumorigenesis despite their changed expression levels in nTSG tumors. This systematic analysis, which includes both RNA-Seq and in vivo functional studies, helps to categorize miRNAs into different groups based on their expression profile and functional relevance in epithelial tumorigenesis, whereas the evolutionarily conserved TE and TS miRNAs provide potential therapeutic targets for epithelial tumor treatment.


Journal of Visualized Experiments | 2017

Induction and Diagnosis of Tumors in Drosophila Imaginal Disc Epithelia

Kenta Morimoto; Yoichiro Tamori

In the early stages of cancer, transformed mutant cells show cytological abnormalities, begin uncontrolled overgrowth, and progressively disrupt tissue organization. Drosophila melanogaster has emerged as a popular experimental model system in cancer biology to study the genetic and cellular mechanisms of tumorigenesis. In particular, genetic tools for Drosophila imaginal discs (developing epithelia in larvae) enable the creation of transformed pro-tumor cells within a normal epithelial tissue, a situation similar to the initial stages of human cancer. A recent study of tumorigenesis in Drosophila wing imaginal discs, however, showed that tumor initiation depends on the tissue-intrinsic cytoarchitecture and the local microenvironment, suggesting that it is important to consider the region-specific susceptibility to tumorigenic stimuli in evaluating tumor phenotypes in imaginal discs. To facilitate phenotypic analysis of tumor progression in imaginal discs, here we describe a protocol for genetic experiments using the GAL4-UAS system to induce neoplastic tumors in wing imaginal discs. We further introduce a diagnosis method to classify the phenotypes of clonal lesions induced in imaginal epithelia, as a clear classification method to discriminate various stages of tumor progression (such as hyperplasia, dysplasia, or neoplasia) had not been described before. These methods might be broadly applicable to the clonal analysis of tumor phenotypes in various organs in Drosophila.


Developmental Cell | 2013

Tissue Repair through Cell Competition and Compensatory Cellular Hypertrophy in Postmitotic Epithelia

Yoichiro Tamori; Wu-Min Deng

Collaboration


Dive into the Yoichiro Tamori's collaboration.

Top Co-Authors

Avatar

Wu-Min Deng

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Chun Huang

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Emiko Suzuki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Ai-Guo Tian

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongyu Jia

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Gengqiang Xie

Florida State University

View shared research outputs
Top Co-Authors

Avatar

John S. Poulton

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge