Yoke Keong Yong
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoke Keong Yong.
Evidence-based Complementary and Alternative Medicine | 2013
Yoke Keong Yong; Jun Jie Tan; Soek Sin Teh; Siau Hui Mah; Gwendoline Cheng Lian Ee; Hoe Siong Chiong; Zuraini Ahmad
Clinacanthus nutans Lindau leaves (CN) have been used in traditional medicine but the therapeutic potential has not been explored for cancer prevention and treatment. Current study aimed to evaluate the antioxidant and antiproliferative effects of CN, extracted in chloroform, methanol, and water, on cancer cell lines. Antioxidant properties of CN were evaluated using DPPH, galvinoxyl, nitric oxide, and hydrogen peroxide based radical scavenging assays, whereas the tumoricidal effect was tested on HepG2, IMR32, NCL-H23, SNU-1, Hela, LS-174T, K562, Raji, and IMR32 cancer cells using MTT assay. Our data showed that CN in chloroform extract was a good antioxidant against DPPH and galvinoxyl radicals, but less effective in negating nitric oxide and hydrogen peroxide radicals. Chloroform extract exerted the highest antiproliferative effect on K-562 (91.28 ± 0.03%) and Raji cell lines (88.97 ± 1.07%) at 100 μg/ml and the other five cancer cell lines in a concentration-dependent manner, but not on IMR-32 cells. Fourteen known compounds were identified in chloroform extract, which was analysed by gas chromatography—mass spectra analysis. In conclusion, CN extracts possess antioxidant and antiproliferative properties against cultured cancer cell lines, suggesting an alternate adjunctive regimen for cancer prevention or treatment.
BMC Complementary and Alternative Medicine | 2013
Yoke Keong Yong; Zainul Amiruddin Zakaria; Arifah Abdul Kadir; Muhammad Nazrul Somchit; Gwendoline Ee Cheng Lian; Zuraini Ahmad
BackgroundBixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO) and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats.MethodsAcute inflammation was produced by subplantar injection of 0.1 mL of 0.1% histamine into the right hind paw of each rat in the control and treatment groups. The degree of edema was measured before injection and at the time points of 30, 60, 120, 180, 240 and 300 min after injection. Changes of peritoneal vascular permeability were studied using Evans blue dye as a detector. Vascular permeability was evaluated by the amount of dye leakage into the peritoneal cavity in rats. To evaluate the inhibitory effect of AEBO on biochemical mediators of vascular permeability, the levels of nitric oxide (NO) and vascular endothelial growth factor (VEGF) were determined in histamine-treated paw tissues. The major constituents of AEBO were determined by gas chromatography–mass spectrometry (GC-MS) analysis.ResultsAEBO produced a significant inhibition of histamine-induced paw edema starting at 60 min time point, with maximal percentage of inhibition (60.25%) achieved with a dose of 150 mg/kg of AEBO at 60 min time point. Up to 99% of increased peritoneal vascular permeability produced by histamine was successfully suppressed by AEBO. The expression of biochemical mediators of vascular permeability, NO and VEGF, was also found to be downregulated in the AEBO treated group. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that the major constituent in AEBO was acetic acid.ConclusionsThe experimental findings demonstrated that the anti-inflammatory activity of AEBO was due to its inhibitory effect on vascular permeability, which was suppressed as a result of the reduced expression of biochemical mediators (NO and VEGF) in tissues. Our results contribute towards the validation of the traditional use of Bixa orellana in the treatment of inflammatory disorders.
BioMed Research International | 2013
Soek Sin Teh; Gwendoline Cheng Lian Ee; Siau Hui Mah; Yoke Keong Yong; Yang Mooi Lim; Mawardi Rahmani; Zuraini Ahmad
The in vitro cytotoxicity tests on the extracts of Mesua beccariana, M. ferrea, and M. congestiflora against Raji, SNU-1, HeLa, LS-174T, NCI-H23, SK-MEL-28, Hep-G2, IMR-32, and K562 were achieved using MTT assay. The methanol extracts of Mesua beccariana showed its potency towards the proliferation of B-lymphoma cell (Raji). In addition, only the nonpolar to semipolar extracts (hexane to ethyl acetate) of the three Mesua species indicated cytotoxic effects on the tested panel of human cancer cell lines. Antioxidant assays were evaluated using DPPH scavenging radical assay and Folin-Ciocalteu method. The methanol extracts of M. beccariana and M. ferrea showed high antioxidant activities with low EC50 values of 12.70 and 9.77 μg/mL, respectively, which are comparable to that of ascorbic acid (EC50 = 5.62 μg/mL). Antibacterial tests were carried out using four Gram positive and four Gram negative bacteria on Mesua beccariana extracts. All the extracts showed negative results in the inhibition of Gram negative bacteria. Nevertheless, methanol extracts showed some activities against Gram positive bacteria which are Bacillus cereus, methicillin-sensitive Staphylococcus aureus (MSSA), and methicillin-resistant Staphylococcus aureus (MRSA), while the hexane extract also contributed some activities towards Bacillus cereus.
International Journal of Nanomedicine | 2013
Hoe Siong Chiong; Yoke Keong Yong; Zuraini Ahmad; Mohd Roslan Sulaiman; Zainul Amiruddin Zakaria; Kah Hay Yuen; Muhammad Nazrul Hakim
Background Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug. Methods Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7. Results Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2) than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine. Conclusion This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.
PLOS ONE | 2014
Jun Jie Tan; Siti Maisura Azmi; Yoke Keong Yong; Hong Leong Cheah; Vuanghao Lim; Doblin Sandai; Bakiah Shaharuddin
Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
International Journal of Nanomedicine | 2014
Jun Zheng Goh; Sook Nai Tang; Hoe Siong Chiong; Yoke Keong Yong; Ahmad Zuraini; Muhammad Nazrul Hakim
Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall–Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall–Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect was achieved at 56.7% with 20 mg/kg liposome-encapsulated diclofenac, and the lowest effect was shown with 0 mg/kg liposome formulation of 8.89%. The present study suggests that liposome-encapsulated diclofenac exhibits higher antinociceptive efficacy in a dose-dependent manner in comparison with free-form diclofenac.
Artificial Cells Nanomedicine and Biotechnology | 2018
Fahmi Yakop; Siti Aisyah Abd Ghafar; Yoke Keong Yong; Latifah Saiful Yazan; Rohazila Mohamad Hanafiah; Vuanghao Lim; Zolkapli Eshak
Abstract Purpose: The purpose of this study was to investigate apoptotic activity of silver nanoparticle Clinacanthus nutans (AgNps-CN) towards HSC-4 cell lines (oral squamous cell carcinoma cell lines). Methods: Methods involved were MTT assay (cytotoxic activity), morphological cells analysis, flow cytometry and cell cycle analysis and western blot. Results: MTT assay revealed IC50 concentration was 1.61 µg/mL, 3T3-L1 cell lines were used to determine whether AgNps-CN is cytotoxic to normal cells. At the highest concentration (3 µg/mL), no cytotoxic activity has been observed. Flow cytometry assay revealed AgNps-CN caused apoptosis effects towards HSC-4 cell lines with significant changes were observed at G1 phase when compared with untreated cells. Morphological cells analysis revealed that most of the cells exhibit apoptosis characteristics rather than necrosis. Protein study revealed that ratio of Bax/Bcl-2 increased mainly due to down-regulation of Bcl-2 expression. Conclusion: AgNps-CN have shown potential in inhibiting HSC-4 cell lines. IC50 was low compared to few studies involving biosynthesized of silver nanoparticles. Apoptosis effects were shown towards HSC-4 cell lines by the increased in Bax/Bcl-2 protein ratio. Further study such as PCR or in vivo studies are required.
bioRxiv | 2018
Umar Ahmad; Juraimi Raihan; Yoke Keong Yong; Zolkapli Eshak; Fauziah Othman; Aini Ideris
Background Different strains of Newcastle disease virus (NDV) worldwide proved to have tumouricidal activity in several types of cancer cells. However, the possible anti-cancer activity of Malaysian NDV AF2240 strain and its mechanism of action remains unknown. The ability of cytokine-related apoptosis-inducing NDV AF2240 to treat breast cancer was investigated in the current study. Methods A total of 90 mice were used and divided into 15 groups, each group comprising of 6 mice. Tumour, body weight and mortality of the mice were determined throughout the experiment, to observe the effect of NDV and NDV+Tamoxifen treatments on the mice. In addition, the toxic effect of the treatments was determined through liver function test. In order to elucidate the involvement of cytokine production induced by NDV, a total of six cytokines, i.e. IL-6, IFN-γ, MCP-1, IL-10, IL12p70 and TNF-α were measured using cytometric bead array assay (plasma) and enzyme-linked immunosorbent spot (isolated splenocytes). Results The results demonstrated that 4T1 breast cancer cells in allotransplanted mice treated with AF2240 showed a noticeable inhibition in tumour growth and induce apoptotic-related cytokines. Conclusion NDV AF2240 suppression of breast tumour growth is associated with induction of apoptotic-related cytokines.
Vascular Pharmacology | 2018
Lai Yen Fong; Chin Theng Ng; Yoke Keong Yong; Muhammad Nazrul Hakim; Zuraini Ahmad
Endothelial hyperpermeability represents an initiating step in early atherosclerosis and it often occurs as a result of endothelial barrier dysfunction. Asiatic acid, a major triterpene isolated from Centella asiatica (L.) Urban, has previously been demonstrated to protect against tumor necrosis factor (TNF)-α-induced endothelial barrier dysfunction. The present study aimed to investigate the mechanisms underlying the barrier protective effect of asiatic acid in human aortic endothelial cells (HAECs). The localization of F-actin, diphosphorylated myosin light chain (diphospho-MLC), adherens junctions (AJs) and tight junctions (TJs) was studied using immunocytochemistry techniques and confocal microscopy. Their total protein expressions were examined using western blot analysis. The endothelial permeability was assessed using In Vitro Vascular Permeability Assay kits. In addition, intracellular redistribution of the junctional proteins was evaluated using subcellular fractionation kits. We show that asiatic acid stabilized F-actin and diphospho-MLC at the cell periphery and prevented their rearrangement stimulated by TNF-α. However, asiatic acid failed to attenuate cytochalasin D-induced increased permeability. Besides, asiatic acid abrogated TNF-α-induced structural reorganization of vascular endothelial (VE)-cadherin and β-catenin by preserving their reticulum structures at cell-cell contact areas. In addition, asiatic acid also inhibited TNF-α-induced redistribution of occludin and zona occludens (ZO)-1 in different subcellular fractions. In conclusion, the barrier-stabilizing effect of asiatic acid might be associated with preservation of AJs and prevention of TJ redistribution caused by TNF-α. This study provides evidence to support the potential use of asiatic acid in the prevention of early atherosclerosis, which is initiated by endothelial barrier dysfunction.
Cytokine | 2018
Chin Theng Ng; Lai Yen Fong; Yoke Keong Yong; Muhammad Nazrul Hakim; Zuraini Ahmad
HighlightsIFN‐&ggr; induces biphasic changes in caldesmon structure, AJ organization and expression.IFN‐&ggr; induces caldesmon redistribution from the cell periphery to the cytoplasm.IFN‐&ggr; induces AJ redistribution, decreases AJ junctional areas and protein expression.IFN‐&ggr; affects caldesmon‐actin and caldemon‐myosin complexes.p38 MAP kinase is not a key regulator that governs the IFN‐&ggr;‐induced cellular changes. Abstract Endothelial barrier dysfunction leads to increased endothelial permeability and is an early step in the development of vascular inflammatory diseases such as atherosclerosis. Interferon‐&ggr; (IFN‐&ggr;), a proinflammatory cytokine, is known to cause increased endothelial permeability. However, the mechanisms by which IFN‐&ggr; disrupts the endothelial barrier have not been clarified. This study aimed to investigate how IFN‐&ggr; impairs the endothelial barrier integrity by specifically examining the roles of caldesmon, adherens junctions (AJs) and p38 mitogen‐activated protein (MAP) kinase in IFN‐&ggr;‐induced endothelial barrier dysfunction. IFN‐&ggr; exhibited a biphasic effect on caldesmon localization and both the structural organization and protein expression of AJs. In the early phase (4‐8 h), IFN‐&ggr; induced the formation of peripheral caldesmon bands and discontinuous AJs, while AJ protein expression was unchanged. Interestingly, IFN‐&ggr; also stimulated caldesmon phosphorylation, resulting in actin dissociation from caldesmon at 8 h. Conversely, changes seen in the late phase (16–24 h) included cytoplasmic caldesmon dispersal, AJ linearization and junctional area reduction, which were associated with reduced membrane, cytoskeletal and total AJ protein expression. In addition, IFN‐&ggr; enhanced myosin binding to caldesmon at 12 h and persisted up to 24 h. Furthermore, inhibition of p38 MAP kinase by SB203580 did not reverse either the early or late phase changes observed. These data suggest that IFN‐&ggr; may activate signaling molecules other than p38 MAP kinase. In conclusion, our findings enhance the current understanding of how IFN‐&ggr; disrupts endothelial barrier function and reveal potential therapeutic targets, such as caldesmon and AJs, for the treatment of IFN‐&ggr;‐associated vascular inflammatory diseases.