Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoko L. Dupont is active.

Publication


Featured researches published by Yoko L. Dupont.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The modularity of pollination networks

Jens M. Olesen; Jordi Bascompte; Yoko L. Dupont; Pedro Jordano

In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with <50 species were never modular. Both module number and size increased with species number. Each module includes one or a few species groups with convergent trait sets that may be considered as coevolutionary units. Species played different roles with respect to modularity. However, only 15% of all species were structurally important to their network. They were either hubs (i.e., highly linked species within their own module), connectors linking different modules, or both. If these key species go extinct, modules and networks may break apart and initiate cascades of extinction. Thus, species serving as hubs and connectors should receive high conservation priorities.


Advances in Ecological Research | 2012

Biodiversity, Species Interactions and Ecological Networks in a Fragmented World

Melanie Hagen; W. Daniel Kissling; Claus Rasmussen; Marcus A. M. de Aguiar; Lee E. Brown; Daniel W. Carstensen; Isabel Alves-dos-Santos; Yoko L. Dupont; Francois Edwards; Julieta Genini; Paulo R. Guimarães; Gareth B. Jenkins; Pedro Jordano; Christopher N. Kaiser-Bunbury; Mark E. Ledger; Kate P. Maia; Flavia Maria Darcie Marquitti; Órla B. McLaughlin; L. Patrícia C. Morellato; Eoin J. O'Gorman; Kristian Trøjelsgaard; Jason M. Tylianakis; Mariana Morais Vidal; Guy Woodward; Jens M. Olesen

Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales. There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation. Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and super-generalists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Missing and forbidden links in mutualistic networks

Jens M. Olesen; Jordi Bascompte; Yoko L. Dupont; Heidi Elberling; Claus Rasmussen; Pedro Jordano

Ecological networks are complexes of interacting species, but not all potential links among species are realized. Unobserved links are either missing or forbidden. Missing links exist, but require more sampling or alternative ways of detection to be verified. Forbidden links remain unobservable, irrespective of sampling effort. They are caused by linkage constraints. We studied one Arctic pollination network and two Mediterranean seed-dispersal networks. In the first, for example, we recorded flower-visit links for one full season, arranged data in an interaction matrix and got a connectance C of 15 per cent. Interaction accumulation curves documented our sampling of interactions through observation of visits to be robust. Then, we included data on pollen from the body surface of flower visitors as an additional link ‘currency’. This resulted in 98 new links, missing from the visitation data. Thus, the combined visit–pollen matrix got an increased C of 20 per cent. For the three networks, C ranged from 20 to 52 per cent, and thus the percentage of unobserved links (100 − C) was 48 to 80 per cent; these were assumed forbidden because of linkage constraints and not missing because of under-sampling. Phenological uncoupling (i.e. non-overlapping phenophases between interacting mutualists) is one kind of constraint, and it explained 22 to 28 per cent of all possible, but unobserved links. Increasing phenophase overlap between species increased link probability, but extensive overlaps were required to achieve a high probability. Other kinds of constraint, such as size mismatch and accessibility limitations, are briefly addressed.


Advances in Ecological Research | 2010

From Broadstone to Zackenberg: Space, time and hierarchies in ecological networks

Jens M. Olesen; Yoko L. Dupont; Eoin J. O'Gorman; Thomas C. Ings; Katrin Layer; Carlos J. Melián; Kristian Trøjelsgaard; Doris E. Pichler; Claus Rasmussen; Guy Woodward

Summary Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.


Advances in Ecological Research | 2010

From Broadstone to Zackenberg

Jens M. Olesen; Yoko L. Dupont; Eoin J. O'Gorman; Thomas C. Ings; Katrin Layer; Carlos Javier Melian Penate; Kristian Trøjelsgaard; Doris E. Pichler; Claus Rasmussen; Guy Woodward

Summary Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.


Acta Oecologica-international Journal of Ecology | 2002

Native birds and insects, and introduced honey bees visiting Echium wildpretii (Boraginaceae) in the Canary Islands

Alfredo Valido; Yoko L. Dupont; Dennis M. Hansen

In this paper, we report observations of flower visitors of the endemic Echium wildpretii in Tenerife, Canary Islands. This plant inhabits the high altitudinal sub-alpine zone, which is characterized by a harsh climate, low species diversity and a short growing season. Echium wildpretii is a monocarpic perennial, producing a 2–3 m column-shaped, red-flowered, nectar-rich inflorescence. Although these floral traits have previously been suggested as being typical of ornithophilous flowers, this is the first study reporting observations of native birds (Phylloscopus collybita and Serinus canarius) in addition to insects visiting the flowers for nectar. The purposes of this study were firstly to investigate levels of visitation by native birds, native insects, and introduced honey bees. Secondly, we studied the influence of floral display (plant height and number of flowers), nearest neighbours (distance and size) and local vegetation structure on visitation rate. Finally, we discuss the evolution of ornithophily in an otherwise entomophilous plant lineage. We found that the level of bird visitation was relatively high early in the flowering season, but decreased in mid/late season, while the opposite pattern was found for introduced honey bees. For native insects, the frequency of visits was similar in early and late season. Bird visits were correlated with floral display. In the early season, visitation rates of honey bees and the two most common native bee species were correlated with size of the plant or its nearest neighbours, consistent with preference patterns for larger resource patches. Since only insects visit the flowers of other species in the Echium clade, E. wildpretii appears to have evolved from a truly insect-pollinated lineage.


PLOS ONE | 2011

Quantitative historical change in bumblebee (Bombus spp.) assemblages of red clover fields.

Yoko L. Dupont; Christian Damgaard

Background Flower visiting insects provide a vitally important pollination service for many crops and wild plants. Recent decline of pollinating insects due to anthropogenic modification of habitats and climate, in particular from 1950s onwards, is a major and widespread concern. However, few studies document the extent of declines in species diversity, and no studies have previously quantified local abundance declines. We here make a quantitative assessment of recent historical changes in bumblebee assemblages by comparing contemporary and historical survey data. Methodology/Principal Findings We take advantage of detailed, quantitative historical survey data from the 1930s on bumblebee (Bombus spp.) abundances and species composition in red clover (Trifolium pratense) fields, an important floral resource and an attractant of all bumblebee species. We used the historical survey data as a pre-industrialization baseline, and repeated the same sampling protocol at nearly the same localities at present, hence setting up a historical experiment. We detected historical changes in abundances (bees/m2) of both workers (the “pollinatory units”) and queens (effective population size), in addition to species composition. In particular, long-tongued bumblebee species showed consistent and dramatic declines in species richness and abundances throughout the flowering season of red clover, while short-tongued species were largely unaffected. Of 12 Bombus species observed in the 1930s, five species were not observed at present. The latter were all long-tongued, late-emerging species. Conclusions/Significance Because bumblebees are important pollinators, historical changes in local bumblebee assemblages are expected to severely affect plant reproduction, in particular long-tubed species, which are pollinated by long-tongued bumblebees.


PLOS ONE | 2013

Strong Impact of Temporal Resolution on the Structure of an Ecological Network

Claus Rasmussen; Yoko L. Dupont; Jesper B. Mosbacher; Kristian Trøjelsgaard; Jens M. Olesen

Most ecological networks are analysed as static structures, where all observed species and links are present simultaneously. However, this is over-simplified, because networks are temporally dynamical. We resolved an arctic, entire-season plant-flower visitor network into a temporal series of 1-day networks and compared the properties with its static equivalent based on data pooled over the entire season. Several properties differed. The nested link pattern in the static network was blurred in the dynamical version, because the characteristic long nestedness tail of flower–visitor specialists got stunted in the dynamical networks. This tail comprised a small food web of pollinators, parasitoids and hyper-parasitoids. The dynamical network had strong time delays in the transmission of direct and indirect effects among species. Twenty percent of all indirect links were impossible in the dynamical network. Consequently, properties and thus also robustness of ecological networks cannot be deduced from the static topology alone.


Taxon | 2007

The openness of a flower and its number of flower-visitor species

Jens M. Olesen; Yoko L. Dupont; Bodil K. Ehlers; Dennis M. Hansen

We present a phylogeny for Mesembryanthemoideae (Aizoaceae) based on sampling of nearly all species and subspecies of the subfamily and analysis ofcptrnL-F, rbcL-atpB, rps16, nrITSl and morphology. The larger genera Phyllobolus and Mesembryanthemum are not monophyletic. Although some clades can be circumscribed with morphological (often homoplasious) synapomorphies, several clades are impossible to characterise morphologically. We recognise a single genus, Mesembryanthemum, in Mesembryanthemoideae. The genera Aptenia, Aridaria, Aspazoma, Brownanthus, Caulipsolon, Dactylopsis, Phyllobolus, Prenia, Psilocaulon, Sceletium, and Synaptophyllum are reduced to synonymy. Mesembryanthemum, which now consists of 101 species without recognised sections, can be distinguished by several uniquely derived morphological characters. Mesembryanthemum longipapillosum, which had recently been reduced to synonymy, is reinstated.


Population Ecology | 2002

Evolution of apomixis as a strategy of colonization in the dioecious species Lindera glauca (Lauraceae)

Yoko L. Dupont

Abstract I have investigated the reproductive biology of four dioecious species of Lindera in Japan: Lindera obtusiloba Bl., L. umbellata Thunb., L. erythrocarpa Makino, and L. glauca Bl. The sex ratios in populations of the first three species are close to equality, but in L. glauca only female individuals are found in Japan, although males are known from continental Asia. The persistence of this dioecious species in the absence of males is surprising, and prompts the question: What mechanisms operate to ameliorate problems of colonization in species of Lindera? I carried out bagging experiments in order to test for apomixis (asexual reproduction by seeds) and to establish the importance of pollination and fertilization, and potential pollen vectors. Only L. glauca reproduced by apomixis. Level of fruit set was high, and was not affected by pollination. In the other three species, seed set was entirely dependent on pollen transfer, which could be accomplished by small Coleoptera and Diptera. The evolution of apomixis in L. glauca appears to have been a strategy to overcome sterility and establish a population in the Japanese islands even in the absence of males. However, this change in breeding system has not occurred in congeneric, co-occurring species, which do not seem to have experienced a lack of male plants.

Collaboration


Dive into the Yoko L. Dupont's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfredo Valido

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pedro Jordano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge