Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoko Mizokami is active.

Publication


Featured researches published by Yoko Mizokami.


Nature | 2004

Adaptation to natural facial categories

Michael A. Webster; Daniel Kaping; Yoko Mizokami; Paul Duhamel

Face perception is fundamentally important for judging the characteristics of individuals, such as identification of their gender, age, ethnicity or expression. We asked how the perception of these characteristics is influenced by the set of faces that observers are exposed to. Previous studies have shown that the appearance of a face can be biased strongly after viewing an altered image of the face, and have suggested that these after-effects reflect response changes in the neural mechanisms underlying object or face perception. Here we show that these adaptation effects are pronounced for natural variations in faces and for natural categorical judgements about faces. This suggests that adaptation may routinely influence face perception in normal viewing, and could have an important role in calibrating properties of face perception according to the subset of faces populating an individuals environment.


Network: Computation In Neural Systems | 2007

Seasonal variations in the color statistics of natural images

Michael A. Webster; Yoko Mizokami; Shernaaz M. Webster

We examined how the distribution of colors in natural images varies as the seasons change. Images of natural outdoor scenes were acquired at locations in the Western Ghats, India, during monsoon and winter seasons and in the Sierra Nevada, USA, from spring to fall. The images were recorded with an RGB digital camera calibrated to yield estimates of the L, M, and S cone excitations and chromatic and luminance contrasts at each pixel. These were compared across time and location and were analyzed separately for regions of earth and sky. Seasonal climate changes alter both the average color in scenes and how the colors are distributed around the average. Arid periods are marked by a mean shift toward the +L pole of the L vs. M chromatic axis and a rotation in the color distributions away from the S vs. LM chromatic axis and toward an axis of bluish–yellowish variation, both primarily due to changes in vegetation. The form of the change was similar at the two locations suggesting that the color statistics of natural images undergo a characteristic pattern of temporal variation. We consider the implications of these changes for models of both visual sensitivity and color appearance.


Spatial Vision | 2006

Neural adjustments to chromatic blur.

Michael A. Webster; Yoko Mizokami; Leedjia A. Svec; Sarah L. Elliott

The perception of blur in images can be strongly affected by prior adaptation to blurry images or by spatial induction from blurred surrounds. These contextual effects may play a role in calibrating visual responses for the spatial structure of luminance variations in images. We asked whether similar adjustments might also calibrate the visual system for spatial variations in color. Observers adjusted the amplitude spectra of luminance or chromatic images until they appeared correctly focused, and repeated these measurements either before or after adaptation to blurred or sharpened images or in the presence of blurred or sharpened surrounds. Prior adaptation induced large and distinct changes in perceived focus for both luminance and chromatic patterns, suggesting that luminance and chromatic mechanisms are both able to adjust to changes in the level of blur. However, judgments of focus were more variable for color, and unlike luminance there was little effect of surrounding spatial context on perceived blur. In additional measurements we explored the effects of adaptation on threshold contrast sensitivity for luminance and color. Adaptation to filtered noise with a 1/f spectrum characteristic of natural images strongly and selectively elevated thresholds at low spatial frequencies for both luminance and color, thus transforming the chromatic contrast sensitivity function from lowpass to nearly bandpass. These threshold changes were found to reflect interactions between different spatial scales that bias sensitivity against the lowest spatial grain in the image, and may reflect adaptation to different stimulus attributes than the attributes underlying judgments of image focus. Our results suggest that spatial sensitivity for variations in color can be strongly shaped by adaptation to the spatial structure of the stimulus, but point to dissociations in these visual adjustments both between luminance and color and different measures of spatial sensitivity.


Journal of The Optical Society of America A-optics Image Science and Vision | 2005

Visual adjustments to temporal blur

Aaron C. Bilson; Yoko Mizokami; Michael A. Webster

After observers have adapted to an edge that is spatially blurred or sharpened, a focused edge appears too sharp or blurred, respectively. These adjustments to blur may play an important role in calibrating spatial sensitivity. We examined whether similar adjustments influence the perception of temporal edges, by measuring the appearance of a step change in the luminance of a uniform field after adapting to blurred or sharpened transitions. Stimuli were square-wave alternations (at 1 to 8 Hz) filtered by changing the slope of the amplitude spectrum. A two-alternative-forced-choice task was used to adjust the slope until it appeared as a step change, or until it matched the perceived transitions in a reference stimulus. Observers could accurately set the waveform to a square wave, but only at the slower alternation rates. However, these settings were strongly biased by prior adaptation to filtered stimuli, or when the stimuli were viewed within temporally filtered surrounds. Control experiments suggest that the latter induction effects result directly from the temporal blur and are not simply a consequence of brightness induction in the fields. These results suggest that adaptation and induction adjust visual coding so that images are focused not only in space but also in time.


Journal of The Optical Society of America A-optics Image Science and Vision | 2012

Effect of spatial structure on colorfulness adaptation for natural images

Yoko Mizokami; Chie Kamesaki; Nobuki Ito; Shun Sakaibara; Hirohisa Yaguchi

We examined whether the perception of the colorfulness of an image is influenced by the adaptation of the visual system to natural and shuffled images with different degrees of saturation. In the experiment, observers first became adapted to several images with different levels of saturation and then their colorfulness perception of a test image was measured. The results show that their perception of colorfulness was influenced by their adaptation to the saturation of images. The effect was stronger following adaptation to natural images than to images consisting of a shuffled collage of randomized color blocks, which suggests that the naturalness of the spatial structure of an image affects the strength of the effect.


Journal of The Optical Society of America A-optics Image Science and Vision | 2012

Tests of a functional account of the Abney effect

Sean F. O'Neil; Kyle C. McDermott; Yoko Mizokami; John S. Werner; Michael A. Crognale; Michael A. Webster

The Abney effect refers to changes in the hue of lights as they are desaturated. Normally the purity is varied by desaturating with a fixed spectrum. Mizokami et al. [J. Vis.6, 996 (2006)] instead varied purity by using Gaussian spectra and increasing their bandwidth. Under these conditions the hues of lights at short and medium wavelengths tended to remain constant and thus were tied to a fixed property of the stimulus such as the spectral peak, possibly reflecting a compensation for the spectral filtering effects of the eye. Here we test this account more completely by comparing constant hue loci across a wide range of wavelengths and between the fovea and periphery. Purity was varied by adding either a fixed spectrum or by varying the spectral bandwidth, using an Agile Light Source capable of generating arbitrary spectra. For both types of spectra, hue loci were approximated by the Gaussian model at short and medium wavelengths, though the model failed to predict the precise form of the hue changes or the differences between the fovea and periphery. Our results suggest that a Gaussian model provides a useful heuristic for predicting constant hue loci and the form of the Abney effect at short and medium wavelengths and may approximate the inferences underlying the representation of hue in the visual system.


Journal of The Optical Society of America A-optics Image Science and Vision | 2014

Color constancy influenced by unnatural spatial structure

Yoko Mizokami; Hirohisa Yaguchi

The recognition of spatial structures is important for color constancy because we cannot identify an objects color under different illuminations without knowing which space it is in and how that space is illuminated. To show the importance of the natural structure of environments on color constancy, we investigated the way in which color appearance was affected by unnatural viewing conditions in which a spatial structure was distorted. Observers judged the color of a test patch placed in the center of a small room illuminated by white or reddish lights, as well as two rooms illuminated by white and reddish light, respectively. In the natural viewing condition, an observer saw the room(s) through a viewing window, whereas in an unnatural viewing condition, the scene structure was scrambled by a kaleidoscope-type viewing box. Results of single room condition with one illuminant color showed little difference in color constancy between the two viewing conditions. However, it decreased in the two-rooms condition with a more complex arrangement of space and illumination. The patchs appearance under the unnatural viewing condition was more influenced by simultaneous contrast than its appearance under the natural viewing condition. It also appears that color appearance under white illumination is more stable compared to that under reddish illumination. These findings suggest that natural spatial structure plays an important role for color constancy in a complex environment.


Skin Research and Technology | 2016

A new quantitative evaluation method for age-related changes of individual pigmented spots in facial skin

Kumiko Kikuchi; Y. Masuda; Toyonobu Yamashita; K. Sato; C. Katagiri; T. Hirao; Yoko Mizokami; Hirohisa Yaguchi

Facial skin pigmentation is one of the most prominent visible features of skin aging and often affects perception of health and beauty. To date, facial pigmentation has been evaluated using various image analysis methods developed for the cosmetic and esthetic fields. However, existing methods cannot provide precise information on pigmented spots, such as variations in size, color shade, and distribution pattern. The purpose of this study is the development of image evaluation methods to analyze individual pigmented spots and acquire detailed information on their age‐related changes.


I-perception | 2017

Color Constancy in Two-Dimensional and Three-Dimensional Scenes: Effects of Viewing Methods and Surface Texture

Takuma Morimoto; Yoko Mizokami; Hirohisa Yaguchi; Steven L. Buck

There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.


Journal of The Optical Society of America A-optics Image Science and Vision | 2012

Contrast adaptation reveals increased organizational complexity of chromatic processing in the visual evoked potential

Chad S. Duncan; Eric Roth; Yoko Mizokami; Kyle C. McDermott; Michael A. Crognale

Results from psychophysics and single-unit recordings suggest that color vision comprises multiple stages of processing. Postreceptoral channels appear to consist of both a stage of broadly tuned opponent channels that compare cone signals and a subsequent stage, which includes cells tuned to many different directions in color space. The chromatic visual evoked potential (crVEP) has demonstrated chromatic processing selective for cardinal axes of color space. However, crVEP evidence for higher-order color mechanisms is lacking. The present study aimed to assess the contribution of lower- and higher-order color mechanisms to the crVEP by using chromatic contrast adaptation. The results reveal the presence of mechanisms tuned to intermediate directions in color space in addition to those tuned to the fundamental cardinal axes.

Collaboration


Dive into the Yoko Mizokami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Werner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge