Yoko Nishizawa
National Agriculture and Food Research Organization
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoko Nishizawa.
Molecular Genetics and Genomics | 1989
Junzou Hiratsuka; Hiroaki Shimada; Robert F. Whittier; Takashi Ishibashi; Masahiro Sakamoto; Masao Mori; Chihiro Kondo; Yasuko Honji; Chong-Rong Sun; Bing-Yuan Meng; Yuqing Li; Akira Kanno; Yoko Nishizawa; Atsushi Hirai; Kazuo Shinozaki; Masahiro Sugiura
SummaryThe entire chloroplast genome of the monocot rice (Oryza sativa) has been sequenced and comprises 134525 bp. Predicted genes have been identified along with open reading frames (ORFs) conserved between rice and the previously sequenced chloroplast genomes, a dicot, tobacco (Nicotiana tabacum), and a liverwort (Marchantia polymorpha). The same complement of 30 tRNA and 4 rRNA genes has been conserved between rice and tobacco. Most ORFs extensively conserved betweenN. tabacum andM. polymorpha are also conserved intact in rice. However, several such ORFs are entirely absent in rice, or present only in severely truncated form. Structural changes are also apparent in the genome relative to tobacco. The inverted repeats, characteristic of chloroplast genome structure, have expanded outward to include several genes present only once per genome in tobacco and liverwort and the large single copy region has undergone a series of inversions which predate the divergence of the cereals. A chimeric tRNA pseudogene overlaps an apparent endpoint of the largest inversion, and a model invoking illegitimate recombination between tRNA genes is proposed which accounts simultaneously for the origin of this pseudogene, the large inversion and the creation of repeated sequences near the inversion endpoints.
Plant Journal | 2010
Takeo Shimizu; Takuto Nakano; Daisuke Takamizawa; Yoshitake Desaki; Naoko Ishii-Minami; Yoko Nishizawa; Eiichi Minami; Kazunori Okada; Hisakazu Yamane; Hanae Kaku; Naoto Shibuya
Chitin is a major molecular pattern for various fungi, and its fragments, chitin oligosaccharides, are known to induce various defense responses in plant cells. A plasma membrane glycoprotein, CEBiP (chitin elicitor binding protein) and a receptor kinase, CERK1 (chitin elicitor receptor kinase) (also known as LysM-RLK1), were identified as critical components for chitin signaling in rice and Arabidopsis, respectively. However, it is not known whether each plant species requires both of these two types of molecules for chitin signaling, nor the relationships between these molecules in membrane signaling. We report here that rice cells require a LysM receptor-like kinase, OsCERK1, in addition to CEBiP, for chitin signaling. Knockdown of OsCERK1 resulted in marked suppression of the defense responses induced by chitin oligosaccharides, indicating that OsCERK1 is essential for chitin signaling in rice. The results of a yeast two-hybrid assay indicated that both CEBiP and OsCERK1 have the potential to form hetero- or homo-oligomers. Immunoprecipitation using a membrane preparation from rice cells treated with chitin oligosaccharides suggested the ligand-induced formation of a receptor complex containing both CEBiP and OsCERK1. Blue native PAGE and chemical cross-linking experiments also suggested that a major portion of CEBiP exists as homo-oligomers even in the absence of chitin oligosaccharides.
The Plant Cell | 2012
Thomas A. Mentlak; Anja Kombrink; Tomonori Shinya; Lauren S. Ryder; Ippei Otomo; Hiromasa Saitoh; Ryohei Terauchi; Yoko Nishizawa; Naoto Shibuya; Bart P. H. J. Thomma; Nicholas J. Talbot
This work shows that the rice blast fungus secretes a protein that can suppress plant defenses by affecting the way in which chitin, a component of fungal cell walls, is perceived by the rice plant. Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.
Plant Cell Reports | 1998
Yutaka Tabei; S. Kitade; Yoko Nishizawa; N. Kikuchi; T. Kayano; Tadaaki Hibi; Katsumi Akutsu
Abstract A rice chitinase cDNA (RCC2) driven by the CaMV 35S promoter was introduced into cucumber (Cucumis sativus L.) through Agrobacterium mediation. More than 200 putative transgenic shoots were regenerated and grown on MS medium supplemented with 100 mg/l kanamycin. Sixty elongated shoots were examined for the presence of the integrated RCC2 gene and subsequently confirmed to have it. Of these, 20 were tested for resistance against gray mold (Botrytis cinerea) by infection with the conidia: 15 strains out of the 20 independent shoots exhibited a higher resistance than the control (non-transgenic plants). Three transgenic cucumber strains (designated CR29, CR32 and CR33) showed the highest resistance against B. cinerea: the spread of disease was inhibited completely in these strains. Chitinase gene expression in highly resistant transgenic strains (CR32 and CR33) was compared to that of a susceptible transgenic strain (CR20) and a control. Different responses for disease resistance were observed among the highly resistant strains. CR33 inhibited appressoria formation and penetration of hyphae. Although CR32 permitted penetration of hyphae, invasion of the infection hyphae was restricted. Furthermore, progenies of CR32 showed a segregation ratio of 3:1 (resistant:susceptible). As the disease resistance against gray mold was confirmed to be inheritable, these highly resistant transgenic cucumber strains would serve as good breeding materials for disease resistance.
Journal of Experimental Botany | 2013
Naoki Yokotani; Yuko Sato; Shigeru Tanabe; Tetsuya Chujo; Takafumi Shimizu; Kazunori Okada; Hisakazu Yamane; Masaki Shimono; Shoji Sugano; Hiroshi Takatsuji; Hisatoshi Kaku; Eiichi Minami; Yoko Nishizawa
OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice cells. Overexpression of OsWRKY76 in rice plants resulted in drastically increased susceptibility to M. oryzae, but improved tolerance to cold stress. Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants. Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes. These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance.
Molecular Genetics and Genomics | 1993
Yoko Nishizawa; Naoki Kishimoto; Akira Saito; Tadaaki Hibi
Rice chitinases are encoded by a small multigene family. To clarify the overall organization of rice chitinase genes, we have isolated and characterized the genes Cht-1, Cht-2 and Cht-3. Although all the three genes encode class I chitinase, the nucleotide sequences of the coding regions of Cht-1 and Cht-3 are very similar (90%), while that of Cht-2 is clearly more divergent (78%). Only Cht-2 has a 130 by intron and encodes a C-terminal peptide sequence similar to that known to function as a vacuolar targeting signal. In 5′ flanking regions of Cht-1 and Cht-3, but not of Cht-2, conserved sequences (GGCCGGCYGCCCYAG) were found. Related sequences were found also in the 5′ flanking regions of another chitinase gene and a β-glucanase gene which has also been reported to be stress-induced in rice. RNA blot hybridization analysis demonstrated that the stress-induced expression patterns of the Cht-1 and Cht-3 genes are similar, but quite different from that of Cht-2. However, all three genes are active in unstressed roots. By restriction fragment length polymorphism (RFLP) linkage analysis, Cht-1 and Cht-3 were mapped onto chromosome 6 and shown to be closely linked (0.8 cM). Cht-2 was mapped onto chromosome 5. All these features suggest that the expression patterns of rice class I chitinase genes may be correlated with their levels of sequence divergence and their chromosomal location.
Plant and Cell Physiology | 2014
Kana Miyata; Toshinori Kozaki; Yusuke Kouzai; Kenjirou Ozawa; Kazuo Ishii; Erika Asamizu; Yoshihiro Okabe; Yosuke Umehara; Ayano Miyamoto; Yoshihiro Kobae; Kohki Akiyama; Hanae Kaku; Yoko Nishizawa; Naoto Shibuya; Tomomi Nakagawa
Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes.
Plant Science | 2002
Kyutaro Kishimoto; Yoko Nishizawa; Yutaka Tabei; Tadaaki Hibi; Masami Nakajima; Katsumi Akutsu
Abstract The class I chitinase cDNA (RCC2) of rice driven by the CaMV 35S promoter was introduced into cucumber by Agrobacterium-mediated transformation. The transgenic cucumbers showed varying levels of disease resistance to gray mold. We selected three transgenic lines representing different resistance levels, namely the most resistant line (CR32), an intermediate-resistance line (CR3), and a susceptible line (CR20), and studied the correlation between RCC2 expression and disease resistance. ELISA analysis showed that the rice chitinase levels of CR32 and CR3 were higher than that of CR20. RCC2 expression was then examined in more detail using an in situ indirect fluorescent antibody technique and 3-D fluorescence microscopy (CELL Scan system). A homogeneous distribution of cells expressing RCC2 to a high degree was observed in the epidermal and mesophyll cells of CR32 leaves, whereas the intensity of RCC2 expression in CR3 leaves was lower. However, CR3 often showed high expression of RCC2 in parts of leaf tissue. Rice chitinase was localized within cells but was not detected between cells. Optical microscopy of Botrytis cinerea infection behavior revealed that none of the transgenic lines nor any of the non-transgenic lines inhibited the penetration of B. cinerea. However, fungal growth within leaf tissue was suppressed in the resistant lines but not in the non-transformed or CR20 leaf tissue. Thus, we speculate that high expression and intracellular localization of rice chitinase may be involved in enhancing the resistance of transgenic plants to gray mold.
Molecular Plant-microbe Interactions | 1998
Dao-Yao He; Yoshiaki Yazaki; Yoko Nishizawa; Ryota Takai; Kosumi Yamada; Katsuhiro Sakano; Naoto Shibuya; Eiichi Minami
N-Acetylchitoheptaose strongly induces a set of defense reactions in suspension-cultured rice cells including cytoplasmic acidification (K. Kuchitsu, Y. Yazaki, K. Sakano, and N. Shibuya, Plant Cell Physiol. 38:1012-1018, 1997) and the accumulation of mRNAs for two rapidly activated genes, EL2 and EL3 (E. Minami, K. Kuchitsu, D.-Y. He, H. Kouchi, N. Midoh, Y. Ohtsuki, and N. Shibuya, Plant Cell Physiol. 37:563-567, 1996), as well as phenylalanine ammonia-lyase (PAL), chitinase and β-1,3-glucanase. Treatment of cells with propionic acid resulted in the accumulation of the mRNAs for EL2, EL3, and PAL in a manner similar to the accumulation induced by N-acetylchitoheptaose. Concomitantly, there was a rapid decrease in the cytoplasmic pH as detected with in vivo 31P-nuclear magnetic resonance (NMR) spectroscopy. Interestingly, K-252a, a potent inhibitor of Ser/Thr protein kinases, strongly inhibited gene induction by N-acetylchitoheptaose, but showed much less inhibition of gene induction caused by propionic ...
Plant Science | 1991
Yoko Nishizawa; Tadaaki Hibi
Abstract A rice chitinase cDNA clone was isolated using a probe derived from a barley chitinase sequence. The accumulation of the gene transcripts in leaves and suspension cultured cells was also investigated. The cDNA clone had a 1.2 kbp insert containing a single open reading frame of 307 amino acids and showed about 67% homology to the basic chitinases from tobacco and bean. However, the codon usage of the rice chitinase gene was very different from the other known chitinase genes of dicot plants, as expected. DNA blot hybridization analysis suggested that chitinase was encoded by a multigene family of four to six genes. RNA blot hybridization analysis revealed that rice chitinase mRNA levels increased after treating leaves and suspension cultured cells with ethylene or stress-inducings compounds.