Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoko Tabe is active.

Publication


Featured researches published by Yoko Tabe.


Molecular Cancer Therapeutics | 2008

CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells

Linhua Jin; Yoko Tabe; Sergej Konoplev; Yuanyuan Xu; Clinton E. Leysath; Hongbo Lu; Shinya Kimura; Akimichi Ohsaka; Mary Beth Rios; Leslie Calvert; Hagop M. Kantarjian; Michael Andreeff; Marina Konopleva

Chronic myelogenous leukemia (CML) is driven by constitutively activated Bcr-Abl tyrosine kinase, which causes the defective adhesion of CML cells to bone marrow stroma. The overexpression of p210Bcr-Abl was reported to down-regulate CXCR4 expression, and this is associated with the cell migration defects in CML. We proposed that tyrosine kinase inhibitors, imatinib or INNO-406, may restore CXCR4 expression and cause the migration of CML cells to bone marrow microenvironment niches, which in turn results in acquisition of stroma-mediated chemoresistance of CML progenitor cells. In KBM5 and K562 cells, imatinib, INNO-406, or IFN-α increased CXCR4 expression and migration. This increase in CXCR4 levels on CML progenitor cells was likewise found in samples from CML patients treated with imatinib or IFN-α. Imatinib induced G0-G1 cell cycle block in CML cells, which was further enhanced in a mesenchymal stem cell (MSC) coculture system. MSC coculture protected KBM-5 cells from imatinib-induced cell death. These antiapoptotic effects were abrogated by the CXCR4 antagonist AMD3465 or by inhibitor of integrin-linked kinase QLT0267. Altogether, these findings suggest that the up-regulation of CXCR4 by imatinib promotes migration of CML cells to bone marrow stroma, causing the G0-G1 cell cycle arrest and hence ensuring the survival of quiescent CML progenitor cells. [Mol Cancer Ther 2008;7(1):48–58]


Cancer Research | 2007

Activation of Integrin-Linked Kinase Is a Critical Prosurvival Pathway Induced in Leukemic Cells by Bone Marrow–Derived Stromal Cells

Yoko Tabe; Linhua Jin; Yuko Tsutsumi-Ishii; Yuanyuan Xu; Teresa McQueen; Waldemar Priebe; Gordon B. Mills; Akimichi Ohsaka; Isao Nagaoka; Michael Andreeff; Marina Konopleva

Integrin-linked kinase (ILK) directly interacts with beta integrins and phosphorylates Akt in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. In this study, we examined the functional role of ILK activation in leukemic and bone marrow stromal cells on their direct contact. Coculture of leukemic NB4 cells with bone marrow-derived stromal mesenchymal stem cells (MSC) resulted in robust activation of multiple signaling pathways, including ILK/Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducers and activators of transcription 3 (STAT3), and Notch1/Hes. Blockade of PI3K or ILK signaling with pharmacologic inhibitors LY294002 or QLT0267 specifically inhibited stroma-induced phosphorylation of Akt and glycogen synthase kinase 3beta, suppressed STAT3 and ERK1/2 activation, and decreased Notch1 and Hes1 expression in leukemic cells. This resulted in induction of apoptosis in both leukemic cell lines and in primary acute myelogenous leukemia samples that was not abrogated by MSC coculture. In turn, leukemic cells growing in direct contact with bone marrow stromal elements induce activation of Akt, ERK1/2, and STAT3 signaling in MSC, accompanied by significant increase in Hes1 and Bcl-2 proteins, which were all suppressed by QLT0267 and LY294002. In summary, our results indicate reciprocal activation of ILK/Akt in both leukemic and bone marrow stromal cells. We propose that ILK/Akt is a proximal signaling pathway critical for survival of leukemic cells within the bone marrow microenvironment. Hence, disruption of these interactions by ILK inhibitors represents a potential novel therapeutic strategy to eradicate leukemia in the bone marrow microenvironment by simultaneous targeting of both leukemic cells and activated bone marrow stromal cells.


Drug Resistance Updates | 2009

Therapeutic targeting of microenvironmental interactions in leukemia: Mechanisms and approaches

Marina Konopleva; Yoko Tabe; Zhihong Zeng; Michael Andreeff

In hematological malignancies, there are dynamic interactions between leukemic cells and cells of the bone marrow microenvironment. Specific niches within the bone marrow microenvironment provide a sanctuary for subpopulations of leukemic cells to evade chemotherapy-induced death and allow acquisition of a drug-resistant phenotype. This review focuses on molecular and cellular biology of the normal hematopoietic stem cell and the leukemia stem cell niche, and of the molecular pathways critical for microenvironment/leukemia interactions. The key emerging therapeutic targets include chemokine receptors (CXCR4), adhesion molecules (VLA4 and CD44), and hypoxia-related proteins HIF-1alpha and VEGF. Finally, the genetic and epigenetic abnormalities of leukemia-associated stroma will be discussed. This complex interplay provides a rationale for appropriately tailored molecular therapies targeting not only leukemic cells but also their microenvironment to ensure improved outcomes in leukemia.


Clinical Cancer Research | 2009

MDM2 Antagonist Nutlin-3 Displays Antiproliferative and Proapoptotic Activity in Mantle Cell Lymphoma

Yoko Tabe; Denise Sebasigari; Linhua Jin; Martina Rudelius; Theresa Davies-Hill; Kazunori Miyake; Takashi Miida; Stefania Pittaluga; Mark Raffeld

Purpose: Mantle cell lymphoma (MCL) has one of the poorest prognoses of the non-Hodgkins lymphomas, and novel therapeutic approaches are needed. We wished to determine whether Nutlin-3, a novel small-molecule murine double minute 2 (MDM2) antagonist that efficiently activates TP53, might be effective in inducing cell death in MCL. Experimental Design: MCL cell lines with known TP53 status were treated with Nutlin-3, and biological and biochemical consequences were studied. Synergies with the prototypic genotoxic agent doxorubicin and the novel proteasome inhibitor bortezomib were assessed. Results: Nutlin-3 resulted in a reduction in cell proliferation/viability (IC50 < 10 μmol/L), an increase in the apoptotic fraction, and cell cycle arrest in wild-type (wt) TP53 Z-138 and Granta 519 cells. These effects were accompanied by TP53 accumulation and induction of TP53-dependent proteins p21, MDM2, Puma, and Noxa. Cell cycle arrest was characterized by suppression of S phase and an increase in the G0-G1 and G2-M fractions and accompanied by suppression of total and phosphorylated retinoblastoma protein and a decrease in G2-M-associated proteins cyclin B and CDC2. The combination of Nutlin-3 with doxorubicin or bortezomib was synergistic in wt-TP53 MCL cells. Nutlin-3 also induced cell cycle arrest and reduced cell viability in the mutant TP53 MINO cells but at a significantly higher IC50 (22.5 μmol/L). These effects were associated with induction of the TP53 homologue p73, slight increases in p21 and Noxa, and caspase activation. Nutlin-3 and bortezomib synergistically inhibited cell growth of MINO. Conclusion: These findings suggest that the MDM2 antagonist Nutlin-3 may be an effective agent in the treatment of MCL with or without wt-TP53.


British Journal of Haematology | 2014

Advances in understanding the leukaemia microenvironment.

Yoko Tabe; Marina Konopleva

Dynamic interactions between leukaemic cells and cells of the bone marrow are a feature of haematological malignancies. Two distinct microenvironmental niches in the bone marrow, the ‘osteoblastic (endosteal)’ and ‘vascular’ niches, provide a sanctuary for subpopulations of leukaemic cells to evade chemotherapy‐induced death and allow acquisition of drug resistance. Key components of the bone marrow microenvironment as a home for normal haematopoietic stem cells and the leukaemia stem cell niches, and the molecular pathways critical for microenvironment/leukaemia interactions via cytokines, chemokines and adhesion molecules as well as hypoxic conditions, are described in this review. Finally, the genetic abnormalities of leukaemia‐associated stroma are discussed. Further understanding of the contribution of the bone marrow niche to the process of leukaemogenesis may provide new targets that allow destruction of leukaemia stem cells without adversely affecting normal stem cell self‐renewal.


Cell Death & Differentiation | 2007

Apoptosis-based dual molecular targeting by INNO-406, a second-generation Bcr-Abl inhibitor, and ABT-737, an inhibitor of antiapoptotic Bcl-2 proteins, against Bcr-Abl-positive leukemia.

Junya Kuroda; Shinya Kimura; Andreas Strasser; Michael Andreeff; Lorraine A. O'Reilly; Eishi Ashihara; Yuri Kamitsuji; Asumi Yokota; Eri Kawata; Miki Takeuchi; Ruriko Tanaka; Yoko Tabe; Masafumi Taniwaki; Taira Maekawa

Bcr-Abl is the cause of Philadelphia-positive (Ph+) leukemias and also constitutes their principal therapeutic target, as exemplified by dramatic effects of imatinib mesylate. However, mono-targeting of Bcr-Abl does not always achieve complete leukemia eradication, and additional strategies those enable complete elimination of leukemic cells are desired to develop. Here we demonstrate that INNO-406, a much more active Bcr-Abl tyrosine kinase inhibitor than imatinib, augments the activities of several proapoptotic Bcl-2 homology (BH)3-only proteins (Bim, Bad, Bmf and Bik) and induces apoptosis in Ph+ leukemia cells via Bcl-2 family-regulated intrinsic apoptosis pathway. ABT-737, an inhibitor of antiapoptotic Bcl-2 and Bcl-XL, greatly enhanced the apoptosis by INNO-406, even in INNO-406-less sensitive cells with Bcr-Abl point mutations except T315I mutation. In contrast, co-treatment with INNO-406 and other pharmacologic inducers of those BH3-only proteins, such as 17-allylaminogeldanamycin, an heat shock protein-90 inhibitor, or PS-341, a proteasome inhibitor, did not further increase the BH3-only protein levels or sensitize leukemic cells to INNO-406-induced apoptosis, suggesting a limit to how much expression levels of BH3-only proteins can be increased by anticancer agents. Thus, double-barrelled molecular targeting for Bcr-Abl-driven oncogenic signaling and the cell protection by antiapoptotic Bcl-2 family proteins may be the rational therapeutic approach for eradicating Ph+ leukemic cells.


Cell Death & Differentiation | 2007

Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1

Yoko Tabe; Linhua Jin; Rooha Contractor; David Gold; Peter P. Ruvolo; Susanne Radke; Yuanyuan Xu; Y. Tsutusmi-Ishii; Kazunori Miyake; Noriko Miyake; Sigemi Kondo; Akimichi Ohsaka; Isao Nagaoka; Michael Andreeff; Marina Konopleva

The chimeric fusion protein AML1-ETO, created by the t(8;21) translocation, recruits histone deacetylase (HDAC) to AML1-dependent promoters, resulting in transcriptional repression of the target genes. We analyzed the transcriptional changes in t(8;21) Kasumi-1 AML cells in response to the HDAC inhibitors, depsipeptide (FK228) and suberoylanilide hydroxamic acid (SAHA), which induced marked growth inhibition and apoptosis. Using cDNA array, annexin A1 (ANXA1) was identified as one of the FK228-induced genes. Induction of ANXA1 mRNA was associated with histone acetylation in ANXA1 promoter and reversal of the HDAC-dependent suppression of C/EBPα by AML1-ETO with direct recruitment of C/EBPα to ANXA1 promoter. This led to increase in the N-terminal cleaved isoform of ANXA1 protein and accumulation of ANXA1 on cell membrane. Neutralization with anti-ANXA1 antibody or gene silencing with ANXA1 siRNA inhibited FK228-induced apoptosis, suggesting that the upregulation of endogenous ANXA1 promotes cell death. FK228-induced ANXA1 expression was associated with massive increase in cell attachment and engulfment of Kasumi-1 cells by human THP-1-derived macrophages, which was completely abrogated with ANXA1 knockdown via siRNA transfection or ANXA1 neutralization. These findings identify a novel mechanism of action of HDAC inhibitors, which induce the expression and externalization of ANXA1 in leukemic cells, which in turn mediates the phagocytic clearance of apoptotic cells by macrophages.


Science Signaling | 2016

ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies

Jo Ishizawa; Kensuke Kojima; Dhruv Chachad; Peter P. Ruvolo; Vivian Ruvolo; Rodrigo Jacamo; Gautam Borthakur; Hong Mu; Zhihong Zeng; Yoko Tabe; Joshua E. Allen; Zhiqiang Wang; Wencai Ma; Hans C. Lee; Robert Z. Orlowski; Dos D. Sarbassov; Philip L. Lorenzi; Xuelin Huang; Sattva S. Neelapu; Timothy J. McDonnell; Roberto N. Miranda; Michael Wang; Hagop M. Kantarjian; Marina Konopleva; R. Eric Davis; Michael Andreeff

ONC201 triggers an apoptotic cellular stress response in both solid and blood tumors. Stressing cancer cells to death The anticancer drug ONC201 triggers cell death in various tumor types. A pair of papers (see also the Focus by Greer and Lipkowitz) shows that ONC201 activated cell stress pathways that depended on the activation of the transcription factor ATF4. Kline et al. showed that this stress response to ONC201 occurred in cells derived from various types of solid tumors, in which ATF4 activation led to an increase in the abundance of the proapoptotic protein TRAIL and its receptor DR5. Ishizawa et al. demonstrated that in acute myeloid leukemias and mantle cell lymphoma, ONC201 triggered apoptosis and inhibited mTORC1 signaling, a pathway that promotes cell growth and proliferation. The findings reveal more details about ONC201’s mechanism of action, potentially enabling patient stratification and future development to improve its efficacy. The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies.


Leukemia | 2012

Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts

Yoko Tabe; Linhua Jin; Kazuhisa Iwabuchi; Rui-Yu Wang; Naoki Ichikawa; Takashi Miida; Jorge Cortes; Michael Andreeff; Marina Konopleva

We and others have previously demonstrated that p210 Bcr-Abl tyrosine kinase inhibits stromal cell-derived factor-1α/CXCR4 chemokine receptor signaling, contributing to the deficient adhesion of chronic myeloid leukemia (CML) cells to bone marrow stroma. Conversely, exposure of CML cells to a tyrosine kinase inhibitor (TKI) enhances migration of CML cells towards stromal cell layers and promotes non-pharmacological resistance to imatinib. Src-related kinase Lyn is known to interact with CXCL12/CXCR4 signaling and is directly activated by p210 Bcr-Abl. In this study, we demonstrate that TKI treatment promoted CXCR4 redistribution into the lipid raft fraction, in which it co-localized with active phosphorylated form of Lyn (LynTyr396) in CML cells. Lyn inhibition or cholesterol depletion abrogated imatinib-induced migration, and dual Src/Abl kinase inhibitor dasatinib induced fewer CML cells to migrate to the stroma. These findings demonstrate the novel mechanism of microenvironment-mediated resistance through lipid raft modulation, which involves compartmental changes of the multivalent CXCR4 and Lyn complex. We propose that pharmacological targeting of lipid rafts may eliminate bone marrow-resident CML cells through interference with microenvironment-mediated resistance.


PLOS ONE | 2013

TGF-β-Neutralizing Antibody 1D11 Enhances Cytarabine-Induced Apoptosis in AML Cells in the Bone Marrow Microenvironment.

Yoko Tabe; Yue Xi Shi; Zhihong Zeng; Linhua Jin; Masato Shikami; Yasuhito Hatanaka; Takashi Miida; Frank J. Hsu; Michael Andreeff; Marina Konopleva

Hypoxia and interactions with bone marrow (BM) stromal cells have emerged as essential components of the leukemic BM microenvironment in promoting leukemia cell survival and chemoresistance. High levels of transforming growth factor beta 1 (TGFβ1) produced by BM stromal cells in the BM niche regulate cell proliferation, survival, and apoptosis, depending on the cellular context. Exogenous TGFβ1 induced accumulation of acute myeloid leukemia (AML) cells in a quiescent G0 state, which was further facilitated by the co-culture with BM-derived mesenchymal stem cells (MSCs). In turn, TGFβ-neutralizing antibody 1D11 abrogated rhTGFβ1 induced cell cycle arrest. Blocking TGFβ with 1D11 further enhanced cytarabine (Ara-C)–induced apoptosis of AML cells in hypoxic and in normoxic conditions. Additional constituents of BM niche, the stroma-secreted chemokine CXCL12 and its receptor CXCR4 play crucial roles in cell migration and stroma/leukemia cell interactions. Treatment with 1D11 combined with CXCR4 antagonist plerixafor and Ara-C decreased leukemia burden and prolonged survival in an in vivo leukemia model. These results indicate that blockade of TGFβ by 1D11 and abrogation of CXCL12/CXCR4 signaling may enhance the efficacy of chemotherapy against AML cells in the hypoxic BM microenvironment.

Collaboration


Dive into the Yoko Tabe's collaboration.

Top Co-Authors

Avatar

Marina Konopleva

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Andreeff

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Takashi Miida

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kensuke Kojima

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge