Yolanda Diz-Chaves
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yolanda Diz-Chaves.
Journal of Neuroinflammation | 2012
Yolanda Diz-Chaves; Olga Pernía; Paloma Carrero; Luis Miguel Garcia-Segura
BackgroundStress during fetal life increases the risk of affective and immune disorders later in life. The altered peripheral immune response caused by prenatal stress may impact on brain function by the modification of local inflammation. In this study we have explored whether prenatal stress results in alterations in the immune response in the hippocampus of female mice during adult life.MethodsPregnant C57BL/6 mice were subjected three times/day during 45 minutes to restraint stress from gestational Day 12 to delivery. Control non-stressed pregnant mice remained undisturbed. At four months of age, non-stressed and prenatally stressed females were ovariectomized. Fifteen days after surgery, mice received an i.p. injection of vehicle or of 5u2009mg/kg of lipopolysaccharide (LPS). Mice were sacrificed 20 hours later by decapitation and the brains were removed. Levels of interleukin-1β (IL1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), interferon γ-inducible protein 10 (IP10), and toll-like receptor 4 mRNA were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry. Statistical significance was determined by one-way or two-way analysis of variance.ResultsPrenatal stress, per se, increased IL1β mRNA levels in the hippocampus, increased the total number of Iba1-immunoreactive microglial cells and increased the proportion of microglial cells with large somas and retracted cellular processes. In addition, prenatally stressed and non-stressed animals showed different responses to peripheral inflammation induced by systemic administration of LPS. LPS induced a significant increase in mRNA levels of IL-6, TNF-α and IP10 in the hippocampus of prenatally stressed mice but not of non-stressed animals. In addition, after LPS treatment, prenatally stressed animals showed a higher proportion of Iba1-immunoreactive cells in the hippocampus with morphological characteristics of activated microglia compared to non-stressed animals. In contrast, LPS induced similar increases in expression of IL1β and toll-like receptor 4 in both prenatally stressed and non-stressed animals.ConclusionThese findings indicate that prenatal stress induces long-lasting modifications in the inflammatory status of the hippocampus of female mice under basal conditions and alters the immune response of the hippocampus to peripheral inflammation.
Endocrinology | 2009
George E. Barreto; María Santos-Galindo; Yolanda Diz-Chaves; Olga Pernía; Paloma Carrero; I. Azcoitia; Luis Miguel Garcia-Segura
After brain injury, astrocytes acquire a reactive phenotype characterized by a series of morphological and molecular modifications, including the expression of the cytoskeletal protein vimentin. Previous studies have shown that estradiol down-regulates reactive astrogliosis. In this study we assessed whether raloxifene and tamoxifen, two selective estrogen receptor modulators, have effects similar to estradiol in astrocytes. We also assessed whether aging and the timing of estrogenic therapy after ovariectomy influence the action of the estrogenic compounds. Four groups of animals were studied: 1) young rats, ovariectomized at 2 months of age; 2) middle-aged rats, ovariectomized at 8 months of age; 3) aged rats, ovariectomized at 18 months of age; and 4) aged rats, ovariectomized at 2 months and sham operated at 18 months of age. Fifteen days after ovariectomy or sham surgery, animals received a stab wound brain injury and the treatment with the estrogenic compounds. The number of vimentin-immunoreactive astrocytes after injury was significantly higher in the hippocampus of aged rats after a long-term ovariectomy compared with aged animals after a short-term ovariectomy and middle-aged rats. In addition, reactive astrocytes were more numerous in the two groups of aged animals than in young animals. Despite these differences, the estrogenic compounds reduced reactive astrogliosis in all animal groups. These findings indicate that estradiol, raloxifene, and tamoxifen are potential candidates for the control of astrogliosis in young and older individuals and after a prolonged depletion of ovarian hormones.
Journal of Endocrinology | 2008
Silvia Tapia-González; Paloma Carrero; Olga Pernía; Luis Miguel Garcia-Segura; Yolanda Diz-Chaves
It has been previously reported that the neuroprotective hormone oestradiol reduces microglia inflammatory activity. The objective of this study was to test whether two selective oestrogen receptor modulators, tamoxifen and raloxifene, modulate in vivo the activation of microglia induced by the peripheral administration of lipopolysaccharide (LPS). Activation of microglia was assessed in the white matter of the cerebellum using immunoreactivity for major histocompatability complex-II. Oestradiol, tamoxifen and raloxifene decreased microglia activation induced by LPS in male and ovariectomized female rats, although the doses of oestradiol that were effective in decreasing microglia reactivity were not the same in both sexes. Tamoxifen reduced microglia activation in all experimental groups at all doses tested (0.5-2 mg/kg b.w.) while raloxifene lost its anti-inflammatory activity at the higher dose tested (2 mg/kg b.w). In addition, raloxifene had per se a moderate pro-inflammatory activity in the brain of control female rats and its anti-inflammatory activity was partially impaired in female animals after 1 month of deprivation of ovarian hormones. Spots of oestrogen receptor (ER)-alpha immunoreactivity were detected in the soma and cell processes of microglia. Treatment with LPS, oestradiol or tamoxifen induced an increase of ER-alpha immunoreactive spots in the perikaryon of microglia, while oestradiol antagonized the effect of LPS. The results indicate that some oestrogenic compounds decrease brain inflammation by a mechanism that may involve ERs expressed by microglia. The findings support the potential therapeutic role of oestrogenic compounds as protective anti-inflammatory agents for the central nervous system.
Brain Behavior and Immunity | 2013
Yolanda Diz-Chaves; Mariana Astiz; María José Bellini; Luis Miguel Garcia-Segura
Early life experiences, such as prenatal stress, may result in permanent alterations in the function of the nervous and immune systems. In this study we have assessed whether prenatal stress affects the inflammatory response of the hippocampal formation of male mice to an inflammatory challenge during adulthood. Pregnant C57BL/6 mice were randomly assigned to stress (n=10) or non-stress (n=10) groups. Animals of the stress group were placed in plastic transparent cylinders and exposed to bright light for 3 sessions of 45min every day from gestational day 12 to parturition. Non-stressed pregnant mice were left undisturbed. At four months of age, non stressed and prenatally stressed male offspring were killed, 24h after the systemic administration of lipopolysaccharide (LPS) or vehicle. Under basal conditions, prenatally stressed animals showed increased expression of interleukin 1β and tumor necrosis factor-α (TNF-α) in the hippocampus and an increased percentage of microglia cells with reactive morphology in CA1 compared to non-stressed males. Furthermore, prenatally stressed mice showed increased TNF-α immunoreactivity in CA1 and increased number of Iba-1 immunoreactive microglia and GFAP-immunoreactive astrocytes in the dentate gyrus after LPS administration. In contrast, LPS did not induce such changes in non-stressed animals. These findings indicate that prenatal stress induces a basal proinflammatory status in the hippocampal formation during adulthood that results in an enhanced activation of microglia and astrocytes in response to a proinflammatory insult.
Journal of Neuroendocrinology | 2012
María Ángeles Arévalo; Yolanda Diz-Chaves; María Santos-Galindo; María José Bellini; Luis Miguel Garcia-Segura
Neuroinflammation comprises a feature of many neurological disorders that is accompanied by the activation of glial cells and the release of pro‐inflammatory cytokines and chemokines. Such activation is a normal response oriented to protect neural tissue and it is mainly regulated by microglia and astroglia. However, excessive and chronic activation of glia may lead to neurotoxicity and may be harmful for neural tissue. The ovarian hormone oestradiol exerts protective actions in the central nervous system that, at least in part, are mediated by a reduction of reactive gliosis. Several selective oestrogen receptor modulators may also exert neuroprotective effects by controlling glial inflammatory responses. Thus, tamoxifen and raloxifene decrease the inflammatory response caused by lipopolysaccharide, a bacterial endotoxin, in mouse and rat microglia cells in vitro. Tamoxifen and raloxifene are also able to reduce microglia activation in the brain of male and female rats in vivo after the peripheral administration of lipopolysaccharide. In addition, tamoxifen decreases the microglia inflammatory response induced by irradiation. Furthermore, treatment with tamoxifen and raloxifene resulted in a significant reduction of the number of reactive astrocytes in the hippocampus of young, middle‐aged and older female rats after a stab wound injury. Tamoxifen, raloxifene and the new selective oestrogen receptor modulators ospemifene and bazedoxifene decrease the expression and release of interleukine‐6 and interferon‐γ inducible protein‐10 in cultured astrocytes exposed to lipopolysaccharide. Ospemifene and bazedoxifene exert anti‐inflammatory effects in astrocytes by a mechanism involving classical oestrogen receptors and the inhibition of nuclear factor‐kappa B p65 transactivation. These data suggest that oestrogenic compounds are candidates to counteract brain inflammation under neurodegenerative conditions by targeting the production and release of pro‐inflammatory molecules by glial cells.
Psychoneuroendocrinology | 2010
Cristina García-Cáceres; Natalia Lagunas; Isabel Calmarza-Font; Iñigo Azcoitia; Yolanda Diz-Chaves; Luis Miguel Garcia-Segura; Eva Baquedano; Laura M. Frago; Jesús Argente; Julie A. Chowen
Stress during pregnancy can impair biological and behavioral responses in the adult offspring and some of these effects are associated with structural changes in specific brain regions. Furthermore, these outcomes can vary according to strain, gender, and type and duration of the maternal stress. Indeed, early stress can induce sexually dimorphic long-term effects on diverse endocrine axes, including subsequent responses to stress. However, whether hypothalamic structural modifications are associated with these endocrine disruptions has not been reported. Thus, we examined the gender differences in the long-term effects of prenatal and adult immobilization stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and the associated changes in hypothalamic structural proteins. Pregnant Wistar rats were subjected to immobilization stress three times daily (45 min each) during the last week of gestation. One half of the offspring were subjected to the same regimen of stress on 10 consecutive days starting at postnatal day (PND) 90. At sacrifice (PND 180), serum corticosterone levels were significantly higher in females compared to males and increased significantly in females subjected to both stresses with no change in males. Prenatal stress increased pituitary ACTH content in males, with no effect in females. Hypothalamic CRH mRNA levels were significantly increased by prenatal stress in females, but decreased in male rats. In females neither stress affected hypothalamic cell death, as determined by cytoplasmic histone-associated DNA fragment levels or proliferation, determined by proliferating cell nuclear antigen levels (PCNA); however, in males there was a significant decrease in cell death in response to prenatal stress and a decrease in PCNA levels with both prenatal and adult stress. In all groups BrdU immunoreactivity colocalized in glial fibrillary acidic protein (GFAP) positive cells, with few BrdU/NeuN labelled cells found. Furthermore, in males the astrocyte marker S100β increased with prenatal stress and decreased with adult stress, suggesting affectation of astrocytes. Synapsin-1 levels were increased by adult stress in females and by prenatal stress in males, while, PSD95 levels were increased in females and decreased in males by both prenatal and adult stress. In conclusion, hypothalamic structural rearrangement appears to be involved in the long-term endocrine outcomes observed after both chronic prenatal and adult stresses. Furthermore, many of these changes are not only different between males and females, but opposite, which could underlie the gender differences in the long-term sequelae of chronic stress, including subsequent responses to stress.
Psychoneuroendocrinology | 2007
Luis Miguel Garcia-Segura; Yolanda Diz-Chaves; Margarita Pérez-Martín; Muriel Darnaudéry
The decrease in some hormones with aging, such as insulin-like growth factor-I (IGF-I) and estradiol, may have a negative impact on brain function. Estradiol and IGF-I may antagonize the damaging effects of adrenal steroids and other causes of brain deterioration. The signaling of estradiol and IGF-I interact to promote neuroprotection. Estrogen receptor alpha, in an estrogen-dependent process, can physically interact with IGF-I receptor and with the downstream signaling molecules of the phosphotidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase 3 (GSK3) pathway. Estradiol and IGF-I have a synergistic effect on the activation of Akt, which in turn decreases the activity of GSK3. This may be one of the mechanisms used by estradiol to promote neuronal survival, since the inhibition of GSK3 is associated to the activation of surviving signaling pathways in neurons. Furthermore, estradiol may control Tau phosphorylation by modulating the interactions of estrogen receptor alpha with GSK3 and beta-catenin, another molecule involved in the regulation of neuronal survival and the reorganization of the cytoskeleton. All these actions may be involved in the neuroprotective effects of the hormone. Possible aging-associated changes in the expression or activity of these signaling molecules may affect estradiol neuroprotective effects. Therefore, it is important to determine whether aging affects the signaling of estradiol and IGF-I in the brain.
Hormones and Behavior | 2010
Natalia Lagunas; Isabel Calmarza-Font; Yolanda Diz-Chaves; Luis Miguel Garcia-Segura
Ovarian hormones exert anti-depressive and anxiolytic actions. In this study we have analyzed the effects of ovariectomy on the development of anxiety and depression-like behaviors and on cell proliferation in the hippocampus of mice submitted to chronic unpredictable stress. Animals submitted to stress 4 months after ovariectomy showed a significant increase in immobility behavior in the forced swimming test compared to animals submitted to stress 2 weeks after ovariectomy. In addition, long-term ovariectomy resulted in a significant decrease on the time spent in the open arms in the elevated plus-maze test compared to control animals. Stress did not significantly affect cell proliferation in the hilus of the dentate gyrus. However, ovariectomy resulted in a significant decrease in cell proliferation. These results indicate that long-term deprivation of ovarian hormones enhances the effect of chronic unpredictable stress on depressive- and anxiety-like behaviors in mice. Therefore, a prolonged deprivation of ovarian hormones may represent a risk factor for the development of depressive and anxiety symptoms after the exposure to stressful experiences.
International Journal of Peptides | 2011
Yolanda Diz-Chaves
Obesity has become one of the leading causes of illness and mortality in the developed world. Preclinical and clinical data provide compelling evidence for ghrelin as a relevant regulator of appetite, food intake, and energy homeostasis. In addition, ghrelin has recently emerged as one of the major contributing factors to reward-driven feeding that can override the state of satiation. The corticotropin-releasing-factor system is also directly implicated in the regulation of energy balance and may participate in the pathophysiology of obesity and eating disorders. This paper focuses on the role of ghrelin in the regulation of appetite, on its possible role as a hedonic signal involved in food reward, and on its interaction with the corticotropin-releasing-factor system and chronic stress.
Experimental Gerontology | 2012
Yolanda Diz-Chaves; Anita Kwiatkowska-Naqvi; Hendrik Von Hülst; Olga Pernía; Paloma Carrero; Luis Miguel Garcia-Segura
Clinical studies suggest that aging may affect the neural outcome of estrogen therapy in postmenopausal women. In this study we have assessed whether age influences the behavioral outcome of estradiol therapy in rats. Animals were ovariectomized at 2 or 20 months of age. Immediately after ovariectomy animals were treated for 10 weeks with estradiol valerate or vehicle. Estradiol therapy decreased body weight in both young and older rats compared to animals injected with vehicle. In contrast, estradiol treatment improved object recognition memory and decreased anxiety-like behavior in the circular open field of older but not young rats and decreased depressive-like behavior of young but not older animals. Thus, our findings indicate that age affects the outcome of estradiol therapy in the brain.