Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yon Hui Kim is active.

Publication


Featured researches published by Yon Hui Kim.


Cancer Research | 2012

AMPKα Modulation in Cancer Progression: Multilayer Integrative Analysis of the Whole Transcriptome in Asian Gastric Cancer

Yon Hui Kim; Han Liang; Xiuping Liu; Ju Seog Lee; Jae Yong Cho; Jae Ho Cheong; Hoguen Kim; Min Li; Thomas J. Downey; Matthew D. Dyer; Yongming Sun; Jingtao Sun; Ellen M. Beasley; Hyun Cheol Chung; Sung Hoon Noh; John N. Weinstein; Chang Gong Liu; Garth Powis

Gastric cancer is the most common cancer in Asia and most developing countries. Despite the use of multimodality therapeutics, it remains the second leading cause of cancer death in the world. To identify the molecular underpinnings of gastric cancer in the Asian population, we applied an RNA-sequencing approach to gastric tumor and noncancerous specimens, generating 680 million informative short reads to quantitatively characterize the entire transcriptome of gastric cancer (including mRNAs and miRNAs). A multilayer analysis was then developed to identify multiple types of transcriptional aberrations associated with different stages of gastric cancer, including differentially expressed mRNAs, recurrent somatic mutations, and key differentially expressed miRNAs. Through this approach, we identified the central metabolic regulator AMP-activated protein kinase (AMPK)α as a potential functional target in Asian gastric cancer. Furthermore, we experimentally showed the translational relevance of this gene as a potential therapeutic target for early-stage gastric cancer in Asian patients. Together, our findings not only provide a valuable information resource for identifying and elucidating the molecular mechanisms of Asian gastric cancer, but also represent a general integrative framework to develop more effective therapeutic targets.


Cancer Chemotherapy and Pharmacology | 2011

Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase.

Yon Hui Kim; Amy Coon; Amanda F. Baker; Garth Powis

PurposeThioredoxin-1 (Trx-1) redox signaling regulates multiple aspects of cell growth and survival, and elevated tumor levels of Trx-1 have been associated with decreased patient survival. PX-12, an inhibitor of Trx-1 currently in clinical development, has been found to decrease tumor levels of the HIF-1α transcription factor. SSAT1 has been reported to bind to HIF-1α and RACK1, resulting in oxygen-independent HIF-1 ubiquitination and degradation. SSAT2, a related protein, stabilizes the interaction of the VHL protein and elongin C with HIF-1 leading to oxygen-dependent HIF-1α ubiquitination and degradation. We investigated the effects of PX-12 and Trx-1 on SSAT1, SSAT2, and inhibition of HIF-1α.MethodsA panel of cell lines was treated with PX-12 to investigate its effects on SSAT1 and SSAT2 expression, and on HIF-1α protein levels. We also evaluated the regulation of SSAT1 through the Nrf2 and PMF-1, two trans-acting transcription factors.ResultsWe found that PX-12 increased nuclear Nrf2 activity and antioxidant response element binding. PX-12 also increased the expression of SSAT1 but not SSAT2 in a PMF-1-dependent manner that was independent of Trx-1. Inhibition of Nrf2 or PMF-1 prevented the increase in SSAT1 caused by PX-12.ConclusionsThe results show that PX-12, acting independently of Trx-1, increases nuclear Nrf2, which interacts with PMF-1 to increase the expression of SSAT1. The degradation of HIF-1α that results from binding with SSAT1 may explain the decrease in HIF-1α caused by PX-12 and could contribute to the antitumor activity of PX-12.


Biochemical and Biophysical Research Communications | 2014

Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells.

ChangHyuk Kwon; Hyosun Tak; Mina Rho; Hae Ryung Chang; Yon Hui Kim; Kyung Tae Kim; Curt Balch; Eun Kyung Lee; Seungyoon Nam

Piwi-interacting RNAs (piRNAs) are 26-31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies.


Cancer Letters | 2013

Identifying molecular drivers of gastric cancer through next-generation sequencing

Han Liang; Yon Hui Kim

Gastric cancer is the second most common cause of cancer-related death in the world, representing a major global health issue. The high mortality rate is largely due to the lack of effective medical treatment for advanced stages of this disease. Recently next-generation sequencing (NGS) technology has become a revolutionary tool for cancer research, and several NGS studies in gastric cancer have been published. Here we review the insights gained from these studies regarding how use NGS to elucidate the molecular basis of gastric cancer and identify potential therapeutic targets. We also discuss the challenges and future directions of such efforts.


Gut | 2016

HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer

Hae Ryung Chang; Seungyoon Nam; Myeong Cherl Kook; Kyung-Tae Kim; Xiuping Liu; Hui Yao; Hae Rim Jung; Robert Lemos; Hye Hyun Seo; Hee Seo Park; Youme Gim; Dongwan Hong; Iksoo Huh; Young-Woo Kim; Dongfeng Tan; Chang Gong Liu; Garth Powis; Taesung Park; Han Liang; Yon Hui Kim

Background Worldwide, gastric cancer (GC) is the fourth most common malignancy and the most common cancer in East Asia. Development of targeted therapies for this disease has focused on a few known oncogenes but has had limited effects. Objective To determine oncogenic mechanisms and novel therapeutic targets specific for GC by identifying commonly dysregulated genes from the tumours of both Asian-Pacific and Caucasian patients. Methods We generated transcriptomic profiles of 22 Caucasian GC tumours and their matched non-cancerous samples and performed an integrative analysis across different GC gene expression datasets. We examined the inhibition of commonly overexpressed oncogenes and their constituent signalling pathways by RNAi and/or pharmacological inhibition. Results Hepatocyte nuclear factor-4α (HNF4α) upregulation was a key signalling event in gastric tumours from both Caucasian and Asian patients, and HNF4α antagonism was antineoplastic. Perturbation experiments in GC tumour cell lines and xenograft models further demonstrated that HNF4α is downregulated by AMPKα signalling and the AMPK agonist metformin; blockade of HNF4α activity resulted in cyclin downregulation, cell cycle arrest and tumour growth inhibition. HNF4α also regulated WNT signalling through its target gene WNT5A, a potential prognostic marker of diffuse type gastric tumours. Conclusions Our results indicate that HNF4α is a targetable oncoprotein in GC, is regulated by AMPK signalling through AMPKα and resides upstream of WNT signalling. HNF4α may regulate ‘metabolic switch’ characteristic of a general malignant phenotype and its target WNT5A has potential prognostic values. The AMPKα-HNF4α-WNT5A signalling cascade represents a potentially targetable pathway for drug development.


Biotechnology and Bioengineering | 1998

Establishment of an Apoptosis-Resistant and Growth-Controllable Cell Line by Transfecting With Inducible Antisense c-Jun Gene

Yon Hui Kim; Takehiro Iida; Tetsuo Fujita; Satoshi Terada; Atsushi Kitayama; Hiroshi Ueda; Edward V. Prochownik; Eiji Suzuki

By treating the c-jun AS cells with dexamethasone (DEX) in DMEM supplemented with 10% serum, the growth of the cells were completely suppressed for duration of 16 days with high cell viability of above 86%. The c-jun AS cells were able to grow well to 106 cells/ml without supplementation of any serum components, keeping viability high above 80% for 8 days when cultured in the absence of DEX. The c-jun AS cells stayed at a constant cell density and high viability above 80% for 8 days when they were cultured in the presence of DEX under serum-deprivation. In contrast to the c-jun AS cells, the wild type F-MEL cells were unable to grow and they died by apoptosis in 3 days under the serum-deprivation; the internucleosomal cleavage of DNA, a landmark of apoptosis, was clearly detectable. Thus the c-jun AS cell line that is resistant to apoptosis induced by serum-deprivation and can reversibly and viably be growth-arrested was established.


Cancer Letters | 2015

A pathway-based approach for identifying biomarkers of tumor progression to trastuzumab-resistant breast cancer

Seungyoon Nam; Hae Ryung Chang; Hae Rim Jung; Youme Gim; Nam Youl Kim; Regis Grailhe; Haeng Ran Seo; Hee Seo Park; Curt Balch; Jinhyuk Lee; Inhae Park; So Youn Jung; Kyung Chae Jeong; Garth Powis; Han Liang; Eun Sook Lee; Jungsil Ro; Yon Hui Kim

Although trastuzumab is a successful targeted therapy for breast cancer patients with tumors expressing HER2 (ERBB2), many patients eventually progress to drug resistance. Here, we identified subpathways differentially expressed between trastuzumab-resistant vs. -sensitive breast cancer cells, in conjunction with additional transcriptomic preclinical and clinical gene datasets, to rigorously identify overexpressed, resistance-associated genes. From this approach, we identified 32 genes reproducibly upregulated in trastuzumab resistance. 25 genes were upregulated in drug-resistant JIMT-1 cells, which also downregulated HER2 protein by >80% in the presence of trastuzumab. 24 genes were downregulated in trastuzumab-sensitive SKBR3 cells. Trastuzumab sensitivity was restored by siRNA knockdown of these genes in the resistant cells, and overexpression of 5 of the 25 genes was found in at least one of five refractory HER2 + breast cancer. In summary, our rigorous computational approach, followed by experimental validation, significantly implicate ATF4, CHEK2, ENAH, ICOSLG, and RAD51 as potential biomarkers of trastuzumab resistance. These results provide further proof-of-concept of our methodology for successfully identifying potential biomarkers and druggable signal pathways involved in tumor progression to drug resistance.


Nature Communications | 2014

The condensin component NCAPG2 regulates microtubule-kinetochore attachment through recruitment of Polo-like kinase 1 to kinetochores.

Jae Hyeong Kim; Jaegal Shim; Min-Ju Ji; Yuna Jung; Seoung Min Bong; Young-Joo Jang; Eun-Kyung Yoon; Sang-Jin Lee; Kwang Gi Kim; Yon Hui Kim; Chang-Woo Lee; Byung Il Lee; Kyung-Tae Kim

The early event of microtubule-kinetochore attachment is a critical stage for precise chromosome segregation. Here we report that NCAPG2, which is a component of the condensin II complex, mediates chromosome segregation through microtubule-kinetochore attachment by recruiting PLK1 to prometaphase kinetochores. NCAPG2 colocalizes with PLK1 at prometaphase kinetochores and directly interacts with the polo-box domain (PBD) of PLK1 via its highly conserved C-terminal region. In both humans and Caenorhabditis elegans, when NCAPG2 is depleted, the attachment of the spindle to the kinetochore is loosened and misoriented. This is caused by the disruption of PLK1 localization to the kinetochore and by the decreased phosphorylation of its kinetochore substrate, BubR1. In addition, the crystal structure of the PBD of PLK1, in complex with the C-terminal region of NCAPG2, (1007)VLS-pT-L(1011), exhibits structural conservation of PBD-phosphopeptides, suggesting that the regulation of NCAPG2 function is phosphorylation-dependent. These findings suggest that NCAPG2 plays an important role in regulating proper chromosome segregation through a functional interaction with PLK1 during mitosis.


PLOS ONE | 2014

Mg2+ effect on argonaute and RNA duplex by molecular dynamics and bioinformatics implications.

Seungyoon Nam; Hyojung Ryu; Won Joon Son; Yon Hui Kim; Kyung-Tae Kim; Curt Balch; Kenneth P. Nephew; Jinhyuk Lee

RNA interference (RNAi), mediated by small non-coding RNAs (e.g., miRNAs, siRNAs), influences diverse cellular functions. Highly complementary miRNA-target RNA (or siRNA-target RNA) duplexes are recognized by an Argonaute family protein (Ago2), and recent observations indicate that the concentration of Mg2+ ions influences miRNA targeting of specific mRNAs, thereby modulating miRNA-mRNA networks. In the present report, we studied the thermodynamic effects of differential [Mg2+] on slicing (RNA silencing cycle) through molecular dynamics simulation analysis, and its subsequent statistical analysis. Those analyses revealed different structural conformations of the RNA duplex in Ago2, depending on Mg2+ concentration. We also demonstrate that cation effects on Ago2 structural flexibility are critical to its catalytic/functional activity, with low [Mg2+] favoring greater Ago2 flexibility (e.g., greater entropy) and less miRNA/mRNA duplex stability, thus favoring slicing. The latter finding was supported by a negative correlation between expression of an Mg2+ influx channel, TRPM7, and one miRNA’s (miR-378) ability to downregulate its mRNA target, TMEM245. These results imply that thermodynamics could be applied to siRNA-based therapeutic strategies, using highly complementary binding targets, because Ago2 is also involved in RNAi slicing by exogenous siRNAs. However, the efficacy of a siRNA-based approach will differ, to some extent, based on the Mg2+ concentration even within the same disease type; therefore, different siRNA-based approaches might be considered for patient-to-patient needs.


Cytotechnology | 2000

Establishment of an apoptosis-suppressible,cell-cycle arrestable cell line and its applicationfor enhancing protein production of serum-free or-supplemented culture

Yon Hui Kim; Atsushi Kitayama; Mareyuki Takahashi; Etsuo Niki; Eiji Suzuki

Expression of c-jun gene induces apoptosis ofcells cultured in serum-free medium. It also promotescell-cycling in serum-containing medium, leading cellsto die by overgrowth. Previously, we established anapoptosis-suppressible, cell-cycle arrestable cellline, c-jun AS, by transfecting Friend murineerythroleukemia (F-MEL) cells with adexamethasone-inducible antisense c-jun gene.Induction of the antisense c-jun transcriptionwith dexamethasone suppressed c-jun expression.As a result, c-jun AS cells survived inserum-free medium containing dexamethasone for a longtime, while F-MEL cells died quickly in the presenceor absence of dexamethasone. In serum-containingmedium, the growth of c-jun AS cells was viablyblocked by inducing antisense c-juntranscription, and the cells survived at thenon-growth state avoiding overgrowth. In the presentstudy, protein productivity of c-jun AS cellswas examined in comparison with that of wild typeF-MEL cells. C-jun AS and F-MEL cells werefurther transfected with a vector for expressingalkaline phosphatase as a protein to be produced, andnamed c-jun AS-SEAP and F-MEL-SEAP cells,respectively. In the serum-free medium withdexamethasone, c-jun AS-SEAP cells produced theprotein for up to 6 days, while F-MEL-SEAP cellsstopped production on day 3 due to cell death causedby serum deprivation. In the serum-containing mediumwith dexamethasone, c-jun AS-SEAP cells wereviably arrested in the cell cycle, and cell death dueto overgrowth was avoided. As the result, they couldproduce the protein for up to 18 days, whileF-MEL-SEAP cells stopped production within 7 days dueto cell death caused by overgrowth.

Collaboration


Dive into the Yon Hui Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hae Ryung Chang

Sookmyung Women's University

View shared research outputs
Top Co-Authors

Avatar

Han Liang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xiuping Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jinhyuk Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge