Yonatan Kahn
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yonatan Kahn.
Journal of Cosmology and Astroparticle Physics | 2014
Patrick J. Fox; Yonatan Kahn; Matthew McCullough
We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons between multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.
Physical Review D | 2015
Yonatan Kahn; Gordan Krnjaic; Jesse Thaler; Matthew Toups
Among laboratory probes of dark matter, fixed-target neutrino experiments are particularly well-suited to search for light weakly-coupled dark sectors. In this paper, we show that the DAEdALUS source setup---an 800 MeV proton beam impinging on a target of graphite and copper---can improve the present LSND bound on dark photon models by an order of magnitude over much of the accessible parameter space for light dark matter when paired with a suitable neutrino detector such as LENA. Interestingly, both DAEdALUS and LSND are sensitive to dark matter produced from off-shell dark photons. We show for the first time that LSND can be competitive with searches for visible dark photon decays, and that fixed-target experiments have sensitivity to a much larger range of heavy dark photon masses than previously thought. We review the mechanism for dark matter production and detection through a dark photon mediator, discuss the beam-off and beam-on backgrounds, and present the sensitivity in dark photon kinetic mixing for both the DAEdALUS/LENA setup and LSND in both the on- and off-shell regimes.
Journal of Cosmology and Astroparticle Physics | 2015
A. J. Anderson; Patrick J. Fox; Yonatan Kahn; Matthew McCullough
Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}−g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p{sub R}). The entire family of conventional halo-independent g-tilde(v{sub min}) plots for all DM masses are directly found from the single h-tilde(p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde(p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for allmorexa0» halos, without the necessity of multiple g-tilde(v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.«xa0less
Journal of High Energy Physics | 2013
Yonatan Kahn; Matthew McCullough; Jesse Thaler
A bstractThe discovery of a standard-model-like Higgs at 126 GeV and the absence of squark signals thus far at the LHC both point towards a mini-split spectrum for supersymmetry. Within standard paradigms, it is non-trivial to realize a mini-split spectrum with heavier sfermions but lighter gauginos while simultaneously generating Higgs sector soft terms of the correct magnitude, suggesting the need for new models of supersymmetry breaking and mediation. In this paper, we present a new approach to mini-split model building based on gauge mediation by “auxiliary groups”, which are the anomaly-free continuous symmetries of the standard model in the limit of vanishing Yukawa couplings. In addition to the well-known flavor SU(3)F and baryon-minus-lepton U(1)B−L groups, we find that an additional U(1)H acting on the Higgs doublets alone can be used to generate Higgs soft masses and B-terms necessary for a complete model of mini-split. Auxiliary gauge mediation is a special case of Higgsed gauge mediation, and we review the resulting two-loop scalar soft terms as well as three-loop gaugino masses. Along the way, we present a complete two-loop calculation of A-terms and B-terms in gauge mediation, which — contrary to a common misconception — includes a non-zero contribution at the messenger threshold which can be sizable in models with light gauginos. We present several phenomenologically acceptable mini-split spectra arising from auxiliary gauge mediation and highlight a complete minimal model which realizes the required spectrum and Higgs sector soft terms with a single U(1)X auxiliary gauge symmetry. We discuss possible experimental consequences.
Physical Review D | 2017
Eder Izaguirre; Yonatan Kahn; Gordan Krnjaic; Matthew Moschella
In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.
Physical Review D | 2012
Yonatan Kahn; Jesse Thaler
High-luminosity experiments are able to search for new physics at low energies, which could have evaded detection thus far due to very weak couplings to the Standard Model. The DarkLight experiment at Jefferson Lab is designed to search for a new U(1) vector boson A in the mass range 10-100 MeV through its decay A -> e+ e-. In this paper, we demonstrate that DarkLight is also sensitive to an A decaying to invisible final states. We analyze the DarkLight reach for invisible A bosons assuming a nominal two month running time, including the possibility of augmenting the DarkLight design to include photon detection. We also propose two new analysis techniques that might prove useful for other high-luminosity searches: a cut on missing energy to improve the invariant mass resolution, and a cut on the sign of the missing invariant mass-squared to mitigate pileup. We compare the DarkLight reach to existing experimental proposals, including a complementary search using the VEPP-3 positron beam.
Journal of High Energy Physics | 2012
Yonatan Kahn; Jesse Thaler
A bstractLocality is a guiding principle for constructing realistic quantum field theories. Compactified theories offer an interesting context in which to think about locality, since interactions can be nonlocal in the compact directions while still being local in the extended ones. In this paper, we study locality in “theory space”, four-dimensional Lagrangians which are dimensional deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV) completions, one can understand the origin of theory space locality by the irrelevance of nonlocal operators. From an infrared (IR) point of view, though, theory space locality does not appear to be a special property, since the lowest-lying Kaluza- Klein (KK) modes are simply described by a gauged nonlinear sigma model, and locality imposes seemingly arbitrary constraints on the KK spectrum and interactions. We argue that these constraints are nevertheless important from an IR perspective, since they affect the four-dimensional cutoff of the theory where high energy scattering hits strong coupling. Intriguingly, we find that maximizing this cutoff scale implies five-dimensional locality. In this way, theory space locality is correlated with weak coupling in the IR, independent of UV considerations. We briefly comment on other scenarios where maximizing the cutoff scale yields interesting physics, including theory space descriptions of QCD and deconstructions of anti-de Sitter space.
Journal of High Energy Physics | 2015
Yonatan Kahn; Daniel A. Roberts; Jesse Thaler
arXiv: High Energy Physics - Phenomenology | 2016
Yonatan Kahn; B. Safdi; Jesse Thaler
arXiv: High Energy Physics - Phenomenology | 2018
Anson Hook; Zhiquan Sun; B. Safdi; Yonatan Kahn