Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong Biao Liu is active.

Publication


Featured researches published by Yong Biao Liu.


Journal of Economic Entomology | 2001

Large-Scale Management of Insect Resistance to Transgenic Cotton in Arizona: Can Transgenic Insecticidal Crops be Sustained?

Yves Carrière; Timothy J. Dennehy; Brent Pedersen; Shirley Haller; Christa Ellers-Kirk; Larry Antilla; Yong Biao Liu; Elizabeth Willott; Bruce E. Tabashnik

Abstract A major challenge for agriculture is management of insect resistance to toxins from Bacillus thuringiensis (Bt) produced by transgenic crops. Here we describe how a large-scale program is being developed in Arizona for management of resistance to Bt cotton in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), and other insect pests of cotton. Financial support from growers makes this program possible. Collaboration between the Arizona Cotton Research and Protection Council, the University of Arizona, and government agencies has led to development of resistance management guidelines, a remedial action plan, and tools for monitoring compliance with the proposed guidelines. Direct participation in development of resistance management policies is a strong incentive for growers to invest in resistance management research. However, more research, regularly updated regulations, and increased collaboration between stakeholders are urgently needed to maintain efficacy of Bt toxins in transgenic crops.


Journal of Economic Entomology | 2001

Effects of Bt Cotton and Cry1Ac Toxin on Survival and Development of Pink Bollworm (Lepidoptera: Gelechiidae)

Yong Biao Liu; Bruce E. Tabashnik; Timothy J. Dennehy; Amanda L. Patin; Maria A. Sims; Susan K. Meyer; Yves Carrière

Abstract We evaluated the effects of Bacillus thuringiensis (Bt) toxin Cry1Ac on survival and development of a susceptible strain and laboratory-selected resistant strains of pink bollworm, Pectinophora gossypiella (Saunders). For susceptible and resistant strains tested on artificial diet, increases in Cry1Ac concentration reduced developmental rate and pupal weight. In greenhouse tests, survival of resistant larvae on transgenic cotton that produces Cry1Ac (Bt cotton) was 46% relative to their survival on non-Bt cotton. In contrast, Bt cotton killed all susceptible larvae tested. F1 hybrid progeny of resistant and susceptible adults did not survive on Bt cotton, which indicates recessive inheritance of resistance. Compared with resistant or susceptible larvae reared on non-Bt cotton, resistant larvae reared on Bt cotton had lower survival and slower development, and achieved lower pupal weight and fecundity. Recessive resistance to Bt cotton is consistent with one of the basic assumptions of the refuge strategy for delaying resistance to Bt cotton. Whereas slower development of resistant insects on Bt cotton could increase the probability of mating between resistant adults and accelerate resistance, negative effects of Bt cotton on the survival and development of resistant larvae could delay evolution of resistance.


Journal of Economic Entomology | 2001

Overwintering Cost Associated with Resistance to Transgenic Cotton in the Pink Bollworm (Lepidoptera: Gelechiidae)

Yves Carrière; Christa Ellers-Kirk; Amanda L. Patin; Maria A. Sims; Susan K. Meyer; Yong Biao Liu; Timothy J. Dennehy; Bruce E. Tabashnik

Abstract Fitness costs associated with resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) may have important effects on the evolution of resistance. We investigated overwintering costs in pink bollworm, Pectinophora gosypiella (Saunders), strains with different degrees of resistance to Bt cotton. Frequency of resistant individuals in a strain was not associated with induction of diapause or emergence from diapause in early winter. Emergence from diapause in the spring was 71% lower in three highly resistant strains than in two heterogeneous strains from which the resistant strains were derived. This underestimates the overwintering cost because the frequency of the resistance allele was relatively high in the heterogeneous strains. Emergence in the spring in hybrid progeny from crosses between the resistant and heterogeneous strains was greater than in resistant strains but did not differ from susceptible strains, showing that the overwintering cost was recessive to some extent.


Journal of Economic Entomology | 2001

Fitness Costs and Maternal Effects Associated with Resistance to Transgenic Cotton in the Pink Bollworm (Lepidoptera: Gelechiidae)

Yves Carrière; Christa Ellers-Kirk; Yong Biao Liu; Maria A. Sims; Amanda L. Patin; Timothy J. Dennehy; Bruce E. Tabashnik

Abstract Transgenic cotton producing a Bacillus thuringiensis (Bt) toxin is widely used for controlling the pink bollworm, Perctinophora gossypiella (Saunders). We compared performance of pink bollworm strains resistant to Bt cotton with performance of their susceptible counterparts on non-Bt cotton. We found fitness costs that reduced survival on non-Bt cotton by an average of 51.5% in two resistant strains relative to the susceptible strains. The survival cost was recessive in one set of crosses between a resistant strain and the susceptible strain from which it was derived. However, crosses involving an unrelated resistant and susceptible strain indicated that the survival cost could be dominant. Development time on non-Bt cotton did not differ between the two related resistant and susceptible strains. A slight recessive cost affecting development time was suggested by comparison of the unrelated resistant and susceptible strains. Maternal effects transmitted by parents that had eaten Bt-treated artificial diet as larvae had negative effects on embryogenesis, adult fertility, or both, and reduced the ability of neonates to enter cotton bolls. These results provide further evidence that fitness costs associated with the evolution of resistance to Bt cotton are substantial in the pink bollworm.


Journal of Economic Entomology | 2001

Genetics of Pink Bollworm Resistance to Bacillus thuringiensis Toxin Cry1Ac

Yong Biao Liu; Bruce E. Tabashnik; Susan K. Meyer; Yves Carrière; Alan C. Bartlett

Abstract Laboratory selection increased resistance of pink bollworm (Pectinophora gossypiella) to the Bacillus thuringiensis toxin Cry1Ac. Three selections with Cry1Ac in artificial diet increased resistance from a low level to >100-fold relative to a susceptible strain. We used artificial diet bioassays to test F1 hybrid progeny from reciprocal crosses between resistant and susceptible strains. The similarity between F1 progeny from the two reciprocal crosses indicates autosomal inheritance of resistance. The dominance of resistance to Cry1Ac depended on the concentration. Resistance was codominant at a low concentration of Cry1Ac, partially recessive at an intermediate concentration, and completely recessive at a high concentration. Comparison of the artificial diet results with previously reported results from greenhouse bioassays shows that the high concentration of Cry1Ac in bolls of transgenic cotton is essential for achieving functionally recessive inheritance of resistance.


Applied and Environmental Microbiology | 2001

Variation in susceptibility to Bacillus thuringiensis toxins among unselected strains of Plutella xylostella

Joel González-Cabrera; Salvador Herrero; Ali H. Sayyed; Baltasar Escriche; Yong Biao Liu; Susan K. Meyer; Denis J. Wright; Bruce E. Tabashnik; Juan Ferré

ABSTRACT So far, the only insect that has evolved resistance in the field toBacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.


Journal of Economic Entomology | 2004

Shared Genetic Basis of Resistance to Bt Toxin Cry1Ac in Independent Strains of Pink Bollworm

Bruce E. Tabashnik; Yong Biao Liu; Devika C. Unnithan; Yves Carrière; Timothy J. Dennehy; Shai Morin

Abstract Classical and molecular genetic analyses show that two independently derived resistant strains of pink bollworm, Pectinophora gossypiella (Saunders), share a genetic locus at which three mutant alleles confer resistance to Bacillus thuringiensis (Bt) toxin Cry1Ac. One laboratory-selected resistant strain (AZP-R) was derived from individuals collected in 1997 from 10 Arizona cotton fields, whereas the other (APHIS-98R) was derived from a long-term susceptible laboratory strain. Both strains were previously reported to show traits of “mode 1” resistance, the most common type of lepidopteran resistance to Cry1A toxins. Inheritance of resistance to a diagnostic concentration of Cry1Ac (10 μg per gram of diet) was recessive in both strains. In interstrain complementation tests for allelism, F1 progeny from crosses between the two strains were resistant to the diagnostic concentration of Cry1Ac. These results indicate that a major resistance locus is shared by the two strains. Analysis of DNA from the pink bollworm cadherin gene (BtR) using allele-specific polymerase chain reaction (PCR) tests showed that the previously identified resistance alleles (r1, r2, and r3) occurred in both strains, but their frequencies differed between strains. In conjunction with previous findings, the results reported here suggest that PCR-based detection of the three known cadherin resistance alleles might be useful for monitoring resistance to Cry1Ac-producing Bt cotton in field populations of pink bollworm.


Journal of Economic Entomology | 2002

Oviposition on and Mining in Bolls of Bt and Non-Bt Cotton by Resistant and Susceptible Pink Bollworm (Lepidoptera: Gelechiidae)

Yong Biao Liu; Bruce E. Tabashnik; Timothy J. Dennehy; Yves Carrière; Maria A. Sims; Susan K. Meyer

Abstract Transgenic cotton that produces insecticidal crystal protein Cry1Ac of Bacillus thuringiensis (Bt) has been effective in controlling pink bollworm, Pectinophora gossypiella (Saunders). We compared responses to bolls of Bt cotton and non-Bt cotton by adult females and neonates from susceptible and Cry1Ac-resistant strains of pink bollworm. In choice tests on caged cotton plants in the greenhouse, neither susceptible nor resistant females laid fewer eggs on Bt cotton bolls than on non-Bt cotton bolls, indicating that the Bt toxin did not deter oviposition. Multiple regression revealed that the number of eggs laid per boll was negatively associated with boll age and positively associated with boll diameter. Females also laid more eggs per boll on plants with more bolls. The distribution of eggs among bolls of Bt cotton and non-Bt cotton was clumped, indicating that boll quality rather than avoidance of previously laid eggs was a primary factor in oviposition preference. Parallel to the results from oviposition experiments, in laboratory no-choice tests with 10 neonates per boll, the number of entrance holes per boll did not differ between Bt cotton and non-Bt cotton for susceptible and resistant neonates. Also, like females, neonates preferred younger bolls and larger bolls. Thus, acceptance of bolls by females for oviposition and by neonates for mining was affected by boll age and diameter, but not by Bt toxin in bolls. The lack of discrimination between Bt and non-Bt cotton bolls by pink bollworm from susceptible and resistant strains indicates that oviposition and mining initiation are independent of susceptibility to Cry1Ac.


Journal of Economic Entomology | 2000

Binding and toxicity of Bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth (Lepidoptera: Plutellidae).

Yong Biao Liu; Bruce E. Tabashnik; Luke Masson; Baltasar Escriche; Juan Ferré

Abstract We studied mechanisms of resistance to Bacillus thuringiensis insecticidal crystal protein Cry1C in the diamondback moth, Plutella xylostella (L.). Binding assays with midgut brush border membrane vesicles prepared from whole larvae showed no significant difference between resistant and susceptible strains in binding of radioactively-labeled Cry1C. These results indicate that reduced binding of Cry1C to midgut membrane target sites did not cause resistance to Cry1C. Thus, the mechanism of resistance to Cry1C differs from that observed in several previously reported cases of resistance to Cry1A toxins in diamondback moth. We tested Cry1C toxin and Cry1C crystalline protoxin against resistant and susceptible larvae using leaf disk bioassays. After adjusting for the size difference between Cry1C toxin and protoxin, we found that with resistant larvae, toxin was significantly more toxic than protoxin. In contrast, with susceptible larvae, no significant difference in toxicity occurred between Cry1C toxin and protoxin. The resistance ratios for Cry1C were 19 for toxin and 48 for protoxin. These results suggest that reduced conversion of Cry1C protoxin to toxin is a minor mechanism of resistance to Cry1C. Because neither reduced binding nor reduced conversion of protoxin to toxin appear to be major mechanisms, one or more other mechanisms are important in diamondback moth resistance to Cry1C.


Applied and Environmental Microbiology | 2001

Cross-Resistance and Stability of Resistance to Bacillus thuringiensis Toxin Cry1C in Diamondback Moth

Yong Biao Liu; Bruce E. Tabashnik; Susan K. Meyer; Neil Crickmore

ABSTRACT We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp.kurstaki and B. thuringiensis subsp.aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1C-resistant strain had strong cross-resistance to Cry1Ab, Cry1Ac, and Cry1F, low to moderate cross-resistance to Cry1Aa and Cry9Ca, and no cross-resistance to Cry1Bb, Cry1Ja, and Cry2A. Resistance to Cry1C declined when selection was relaxed. Together with previously reported data, the new data on the cross-resistance of a Cry1C-resistant strain reported here suggest that resistance to Cry1A and Cry1C toxins confers little or no cross-resistance to Cry1Bb, Cry2Aa, or Cry9Ca. Therefore, these toxins might be useful in rotations or combinations with Cry1A and Cry1C toxins. Cry9Ca was much more potent than Cry1Bb or Cry2Aa and thus might be especially useful against diamondback moth.

Collaboration


Dive into the Yong Biao Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke Masson

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Ferré

University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge