Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong-Dong Wang is active.

Publication


Featured researches published by Yong-Dong Wang.


Nature | 2013

Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS

Hong Joo Kim; Nam Chul Kim; Yong-Dong Wang; Emily A. Scarborough; Jennifer C. Moore; Zamia Diaz; Kyle S. MacLea; Brian D. Freibaum; Songqing Li; Amandine Molliex; A. Kanagaraj; Robert A. Carter; Kevin B. Boylan; Aleksandra Wojtas; Rosa Rademakers; Jack L. Pinkus; Steven A. Greenberg; John Q. Trojanowski; Bryan J. Traynor; Bradley Smith; Simon Topp; Athina-Soragia Gkazi; John Miller; Christopher Shaw; Michael Kottlors; Janbernd Kirschner; Alan Pestronk; Yun R. Li; Alice Flynn Ford; Aaron D. Gitler

Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a ‘steric zipper’ motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The miR-17∼92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma

Tamar Uziel; Fedor V. Karginov; Suqing Xie; Joel S. Parker; Yong-Dong Wang; Amar Gajjar; Lin He; David Ellison; Richard J. Gilbertson; Gregory J. Hannon; Martine F. Roussel

Medulloblastomas (MBs) are the most common brain tumors in children. Some are thought to originate from cerebellar granule neuron progenitors (GNPs) that fail to undergo normal cell cycle exit and differentiation. Because microRNAs regulate numerous aspects of cellular physiology and development, we reasoned that alterations in miRNA expression might contribute to MB. We tested this hypothesis using 2 spontaneous mouse MB models with specific initiating mutations, Ink4c−/−; Ptch1+/− and Ink4c−/−; p53−/−. We found that 26 miRNAs showed increased expression and 24 miRNAs showed decreased expression in proliferating mouse GNPs and MBs relative to mature mouse cerebellum, regardless of genotype. Among the 26 overexpressed miRNAs, 9 were encoded by the miR-17∼92 cluster family, a group of microRNAs implicated as oncogenes in several tumor types. Analysis of human MBs demonstrated that 3 miR-17∼92 cluster miRNAs (miR-92, miR-19a, and miR-20) were also overexpressed in human MBs with a constitutively activated Sonic Hedgehog (SHH) signaling pathway, but not in other forms of the disease. To test whether the miR-17∼92 cluster could promote MB formation, we enforced expression of these miRNAs in GNPs isolated from cerebella of postnatal (P) day P6 Ink4c−/−; Ptch1+/− mice. These, but not similarly engineered cells from Ink4c−/−; p53−/− mice, formed MBs in orthotopic transplants with complete penetrance. Interestingly, orthotopic mouse tumors ectopically expressing miR-17∼92 lost expression of the wild-type Ptch1 allele. Our findings suggest a functional collaboration between the miR-17∼92 cluster and the SHH signaling pathway in the development of MBs in mouse and man.


PLOS Pathogens | 2012

Control of Virulence by Small RNAs in Streptococcus pneumoniae

Beth Mann; Tim van Opijnen; Jianmin Wang; Caroline Obert; Yong-Dong Wang; Robert Carter; Daniel J. McGoldrick; Granger Ridout; Andrew Camilli; Elaine Tuomanen; Jason W. Rosch

Small noncoding RNAs (sRNAs) play important roles in gene regulation in both prokaryotes and eukaryotes. Thus far, no sRNA has been assigned a definitive role in virulence in the major human pathogen Streptococcus pneumoniae. Based on the potential coding capacity of intergenic regions, we hypothesized that the pneumococcus produces many sRNAs and that they would play an important role in pathogenesis. We describe the application of whole-genome transcriptional sequencing to systematically identify the sRNAs of Streptococcus pneumoniae. Using this approach, we have identified 89 putative sRNAs, 56 of which are newly identified. Furthermore, using targeted genetic approaches and Tn-seq transposon screening, we demonstrate that many of the identified sRNAs have important global and niche-specific roles in virulence. These data constitute the most comprehensive analysis of pneumococcal sRNAs and provide the first evidence of the extensive roles of sRNAs in pneumococcal pathogenesis.


Molecular Microbiology | 2009

Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae

Jason W. Rosch; Geli Gao; Granger Ridout; Yong-Dong Wang; Elaine Tuomanen

The ability of bacteria to sense and respond to both environmental and intracellular metal concentrations plays an important role in pathogenesis. The acquisition of manganese is vital for the virulence of several bacterial species. Although manganese uptake systems have been well studied in bacteria, no manganese efflux system has yet been identified. In this study we have identified a cation diffusion facilitator (CDF) protein (Sp1552) of unknown substrate specificity that functions as a manganese export system in Streptococcus pneumoniae. We designated the gene for this manganese efflux system mntE and found that the mutant strain was highly sensitive to manganese stress. Although the mutant was more resistant to oxidative stress and produced more H2O2 and pili, it had reduced virulence in a murine model of infection, indicating that manganese export plays a role in host pathogenesis. There was a distinct differential transcriptional response to extracellular and intracellular manganese accumulation. Our study indicates that manganese efflux is required for invasive disease and may provide a useful antimicrobial target to devise future therapeutics.


Molecular Microbiology | 2008

Calcium efflux is essential for bacterial survival in the eukaryotic host.

Jason W. Rosch; Jack Sublett; Geli Gao; Yong-Dong Wang; Elaine Tuomanen

In dynamic environments, intracellular homeostasis is maintained by transport systems found in all cells. While bacterial influx systems for essential trace cations are known to contribute to pathogenesis, efflux systems have been characterized mainly in contaminated environmental sites. We describe that the high calcium concentrations in the normal human host were toxic to pneumococci and that bacterial survival in vivo depended on CaxP, the first Ca2+ exporter reported in bacteria. CaxP homologues were found in the eukaryotic sacroplasmic reticulum and in many bacterial genomes. A caxP− mutant accumulated intracellular calcium, a state that was used to reveal signalling networks responsive to changes in intracellular calcium concentration. Chemical inhibition of CaxP was bacteriostatic in physiological calcium concentrations, suggesting a new antibiotic target uncovered under conditions in the eukaryotic host.


Clinical Cancer Research | 2013

Emergence of Polyclonal FLT3 Tyrosine Kinase Domain Mutations during Sequential Therapy with Sorafenib and Sunitinib in FLT3-ITD–Positive Acute Myeloid Leukemia

Sharyn D. Baker; Eric I. Zimmerman; Yong-Dong Wang; Shelley Orwick; Douglas S. Zatechka; Jassada Buaboonnam; Geoffrey Neale; Scott R. Olsen; Eric J. Enemark; Sheila A. Shurtleff; Jeffrey E. Rubnitz; Charles G. Mullighan; Hiroto Inaba

Purpose: To evaluate the clinical activity of sequential therapy with sorafenib and sunitinib in FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD)-positive acute myelogenous leukemia (AML) and monitor the emergence of secondary FLT3 tyrosine kinase domain (TKD) mutations during treatment. Experimental Design: Six children with relapsed/refractory AML were treated with sorafenib in combination with clofarabine and cytarabine, followed by single-agent sorafenib if not a candidate for transplantation. Sunitinib was initiated after sorafenib relapse. Bone marrow samples were obtained for assessment of FLT3 TKD mutations by deep amplicon sequencing. The phase of secondary mutations with ITD alleles was assessed by cloning and sequencing of FLT3 exons 14 through 20. Identified mutations were modeled in Ba/F3 cells, and the effect of kinase inhibitors on FLT3 signaling and cell viability was assessed. Results: Four patients achieved complete remission, but 3 receiving maintenance therapy with sorafenib relapsed after 14 to 37 weeks. Sunitinib reduced circulating blasts in two patients and marrow blasts in one. Two patients did not respond to sorafenib combination therapy or sunitinib. FLT3 mutations at residues D835 and F691 were observed in sorafenib resistance samples on both ITD-positive and -negative alleles. Deep sequencing revealed low-level mutations and their evolution during sorafenib treatment. Sunitinib suppressed leukemic clones with D835H and F691L mutations, but not D835Y. Cells expressing sorafenib-resistant FLT3 mutations were sensitive to sunitinib in vitro. Conclusions: Sunitinib has activity in patients that are resistant to sorafenib and harbor secondary FLT3 TKD mutations. The use of sensitive methods to monitor FLT3 mutations during therapy may allow individualized treatment with the currently available kinase inhibitors. Clin Cancer Res; 19(20); 5758–68. ©2013 AACR.


Blood | 2013

Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia

Jonathan M. Flanagan; Vivien A. Sheehan; Heidi Linder; Thad A. Howard; Yong-Dong Wang; Carolyn Hoppe; Banu Aygun; Robert J. Adams; Geoffrey Neale; Russell E. Ware

Stroke is a devastating complication of sickle cell anemia (SCA), occurring in 11% of patients before age 20 years. Previous studies of sibling pairs have demonstrated a genetic component to the development of cerebrovascular disease in SCA, but few candidate genetic modifiers have been validated as having a substantial effect on stroke risk. We performed an unbiased whole-genome search for genetic modifiers of stroke risk in SCA. Genome-wide association studies were performed using genotype data from single-nucleotide polymorphism arrays, whereas a pooled DNA approach was used to perform whole-exome sequencing. In combination, 22 nonsynonymous variants were identified and represent key candidates for further in-depth study. To validate the association of these mutations with the risk for stroke, the 22 candidate variants were genotyped in an independent cohort of control patients (n = 231) and patients with stroke (n = 57) with SCA. One mutation in GOLGB1 (Y1212C) and another mutation in ENPP1 (K173Q) were confirmed as having significant associations with a decreased risk for stroke. These mutations were discovered and validated by an unbiased whole-genome approach, and future studies will focus on how these functional mutations may lead to protection from stroke in the context of SCA.


Cancer Research | 2013

Th-MYCN Mice with Caspase-8 Deficiency Develop Advanced Neuroblastoma with Bone Marrow Metastasis

Tal Teitz; Madoka Inoue; Marcus B. Valentine; Kejin Zhu; Jerold E. Rehg; Wei Zhao; David Finkelstein; Yong-Dong Wang; Melissa Johnson; Christopher Calabrese; Marcelo Rubinstein; Razqallah Hakem; William A. Weiss; Jill M. Lahti

Neuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due, in part, to the lack of animal models harboring bone marrow disease. The widely used transgenic model, the Th-MYCN mouse, exhibits limited metastasis to this site. Here, we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates 2 frequent alterations in metastatic neuroblastoma, overexpression of MYCN and loss of caspase-8 expression. Mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a Th-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone Th-MYCN mouse. Although overexpression of MYCN by itself rarely caused bone marrow metastasis, combining MYCN overexpression and caspase-8 deletion significantly enhanced bone marrow metastasis (37% incidence). Microarray expression studies of the primary tumors mRNAs and microRNAs revealed extracellular matrix structural changes, increased expression of genes involved in epithelial to mesenchymal transition, inflammation, and downregulation of miR-7a and miR-29b. These molecular changes have been shown to be associated with tumor progression and activation of the cytokine TGF-β pathway in various tumor models. Cytokine TGF-β can preferentially promote single cell motility and blood-borne metastasis and therefore activation of this pathway may explain the enhanced bone marrow metastasis observed in this animal model.


Nuclear Fusion | 2010

Preliminary results of ELMy H-mode experiments on the HL-2A tokamak

Xuru Duan; J.Q. Dong; L.W. Yan; X.T. Ding; Q. W. Yang; J. Rao; D. Q. Liu; W. M. Xuan; L. Chen; X. D. Li; G.J. Lei; J.Y. Cao; Zizheng Cao; X.M. Song; Y. Huang; Yi Liu; W. C. Mao; Q. M. Wang; Z.Y. Cui; X.Q. Ji; B. Li; G. S. Li; H. J. Li; C. W. Luo; Yong-Dong Wang; L. H. Yao; L. Y. Yao; Jian Zhang; J. Zhou; Y. Zhou

Typical ELMy H-mode discharges have been achieved on the HL-2A tokamak with combined auxiliary heating of NBI and ECRH. The minimum power required is about 1.1 MW at a density of 1.6 × 1019 m−3 and increases with a decrease in density, almost independent of the launching order of the ECRH and NBI heating. The energy loss by each edge localized mode (ELM) burst is estimated to be lower than 3% of the total stored energy. At a frequency of typically 400 Hz, the energy confinement time is only marginally reduced by the ELMs. The supersonic molecular beam injection fuelling is found to be beneficial for triggering an L–H transition due to less induced recycling and higher fuelling efficiency. The dwell time of the L–H transition is 20–200 ms, and tends to decrease as the power increases. The delay time of the H–L transition is 10–30 ms for most discharges and is comparable to the energy confinement time. The ELMs with a period of 1–3 ms are sustained for more than ten times the energy confinement time with enhanced confinement factor H89 > 1.5, which tends to decrease with the total heating power. The confinement time in the H-mode discharges increases with plasma current approximately linearly.


Blood | 2015

Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia

Elliot Stieglitz; Camille Troup; Laura C. Gelston; John R. Haliburton; Eric D. Chow; Kristie B. Yu; Jon Akutagawa; Amaro Taylor-Weiner; Y. Lucy Liu; Yong-Dong Wang; Kyle Beckman; Peter D. Emanuel; Benjamin S. Braun; Adam R. Abate; Robert B. Gerbing; Todd A. Alonzo; Mignon L. Loh

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of childhood associated with a poor prognosis. Recently, massively parallel sequencing has identified recurrent mutations in the SKI domain of SETBP1 in a variety of myeloid disorders. These lesions were detected in nearly 10% of patients with JMML and have been characterized as secondary events. We hypothesized that rare subclones with SETBP1 mutations are present at diagnosis in a large portion of patients who relapse, but are below the limits of detection for conventional deep sequencing platforms. Using droplet digital polymerase chain reaction, we identified SETBP1 mutations in 17/56 (30%) of patients who were treated in the Childrens Oncology Group sponsored clinical trial, AAML0122. Five-year event-free survival in patients with SETBP1 mutations was 18% ± 9% compared with 51% ± 8% for those without mutations (P = .006).

Collaboration


Dive into the Yong-Dong Wang's collaboration.

Top Co-Authors

Avatar

David Finkelstein

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Neale

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David W. Ellison

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Hiroto Inaba

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jinghui Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Richard J. Gilbertson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley Pounds

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Brian P. Sorrentino

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jeffrey E. Rubnitz

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge