Yong Eui Choi
Kangwon National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yong Eui Choi.
Plant Physiology and Biochemistry | 2009
Ok Tae Kim; Jei Wan Lee; Kyong Hwan Bang; Young Chang Kim; Dong Yun Hyun; Seon Woo Cha; Yong Eui Choi; Mei Lan Jin; Baik Hwang
To elucidate the exact function of CabAS in Centella asiatica, which was previously reported as a putative beta-amyrin synthase [Plant Cell Rep, 24:304-311, 2005], this gene was functionally expressed in the lanosterol synthase-deficient yeast mutant (erg7). After inducing the CabAS gene with galactose, a peak consistent with the dammarenediol standard was detected in LC/APCIMS analyses and the accumulated product was confirmed as dammarenediol. CabAS should therefore be renamed to C. asiatica dammarenediol synthase (CaDDS). The confirmation of this gene function may allow us to better understand the generation of numerous triterpene carbon skeletons.
Journal of Plant Biology | 2007
Yong Eui Choi; Yong Suk Kim; Myong Jong Yi; Wan Geun Park; Jae Seon Yi; Seong Ryeol Chun; Sang Sup Han; Sung Jae Lee
Demand is increasing for mountain-cultivatedPanax ginseng (MCG) because its quality is considered superior to that of field-cultivated ginseng (FCG). However, MCG grows very slowly, and the factors that might affect this are unknown. In addition, little information is available about the physiological characteristics of its roots. Here, we investigated local soil environments and compared the histological and chemical properties of MCG and FCG roots. Average diameters, lengths, and fresh weights were much smaller in the former. Photosynthesis rates and root cambial activity also were reduced in the MCG tissues. Our analysis of soil from the mountain site revealed an extremely low phosphorus content, although those samples were richer in total nitrogen and organic matter than were the field soils. MCG roots also contained higher amounts of ginsenosides, and total accumulations increased with age. Moreover, ginsenoside Rh2, a red ginseng-specific compound, accumulated in the MCG roots but not in those from FCG plants. Interestingly, numerous calcium oxalate crystals were found in MCG roots, particularly in their rhizomes (i.e., short stems). Therefore, we can conclude from these results that low levels of the essential mineral phosphorus in mountain soils are a critical factor that retards the growth of mountain ginseng. Likewise, the high accumulation of calcium oxalate crystals in MCG roots might be an adaptation mechanism for survival in such a harsh local environment.
Journal of Ginseng Research | 2016
Seong-Bum Park; Ju-Hyeon Chun; Yong-Wook Ban; Jung Yeon Han; Yong Eui Choi
Background The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides (Rg1, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, Rb2, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.
Journal of Plant Biology | 2006
Ok Tae Kim; Tae-Soo Kim; Dong Soo In; Kyong Hwan Bang; Young Chang Kim; Yong Eui Choi; Seon Woo Cha; Nak Sul Seong
Culture conditions were optimized for somatic embryogenesis ofPanax ginseng. The highest frequency of embryo formation was obtained when tissues were excised from the middle region of the cotyledon segments of zygotic embryos. Only treatment with light could stimulate the formation of single-type somatic embryos, whereas multiple-type somatic embryos and calli were observed under dark conditions. The highest production of somatic embryos was found with an NH4+:NO3 ratio of 21:39. Among the tested media (MS, B5, and SH), maximum formation of somatic embryos was obtained when cotyledon expiants were cultured on an 1% agar MS medium supplemented with 5% sucrose. Regenerated ginseng plantlets were transferred to an autoclaved soil mixture in the greenhouse. These transformants showed no detectable variations in their morphology or growth characteristics compared with the donor plant.
Plant and Cell Physiology | 2018
Jung Yeon Han; Ju-Hyeon Chun; Se Ah Oh; Seong-Bum Park; Hwan-Su Hwang; Hyoshin Lee; Yong Eui Choi
Kalopanax septemlobus, commonly named the castor aralia tree, is a highly valued woody medicinal tree belonging to the family Araliaceae. Kalopanax septemlobus contains approximately 15 triterpenoid saponins primarily constituted of hederagenin aglycones. Hederagenin is a representative precursor for hemolytic saponin in plants. In the present study, transcriptome analysis was performed to discover genes involved in hederagenin saponin biosynthesis in K. septemlobus. De novo assembly generated 82,698 unique sequences, including 17,747 contigs and 64,951 singletons, following 454 pyrosequencing. Oxidosqualene cyclases (OSCs) are enzymes that catalyze the formation of diverse triterpene skeletons from 2,3-oxidosqualene. Heterologous expression of an OSC sequence in yeast revealed that KsBAS is a β-amyrin synthase gene. Cytochrome P450 genes (CYPs) make up a supergene family in the plant genome and play a key role in the biosynthesis of sapogenin aglycones. In total, 95 contigs and 110 singletons annotated as CYPs were obtained by sequencing the K. septemlobus transcriptome. By heterologous expression in yeast, we found that CYP716A94 was β-amyrin 28-oxidase involved in oleanolic acid production from β-amyrin, and CYP72A397 was oleanolic acid 23-hydroxylase involved in hederagenin production from oleanolic acid. Engineered yeast co-expressing KsBAS, CYP716A94 and CYP72A397 produced hederagenin. Kalopanax septemlobus CYP72A397 is a novel CYP enzyme that synthesizes hederagenin aglycone from oleanolic acid as a single product. In conclusion, we characterized three genes participating in sequential steps for hederagenin biosynthesis from β-amyrin, which are likely to play a major role in hederagenin saponin biosynthesis in K. septemlobus.
Journal of Ginseng Research | 2018
Yu Shin Gwak; Jung Yeon Han; Yong Eui Choi
Background Protopanaxatriol (PPT) is an aglycone of ginsenosides, which has high medicinal values. Production of PPT from natural ginseng plants requires artificial deglycosylation procedures of ginsenosides via enzymatic or physicochemical treatments. Metabolic engineering could be an efficient technology for production of ginsenoside sapogenin. For PPT biosynthesis in Panax ginseng, damarenediol-II synthase (PgDDS) and two cytochrome P450 enzymes (CYP716A47 and CYP716A53v2) are essentially required. Methods Transgenic tobacco co-overexpressing P. ginseng PgDDS, CYP716A47, and CYP716A53v2 was constructed via Agrobacterium-mediated transformation. Results Expression of the three introduced genes in transgenic tobacco lines was confirmed by Reverse transcription-polymerase chain reaction (RT-PCR). Analysis of liquid chromatography showed three new peaks, dammarenediol-II (DD), protopanaxadiol (PPD), and PPT, in leaves of transgenic tobacco. Transgenic tobacco (line 6) contained 2.8 μg/g dry weight (DW), 7.3 μg/g DW, and 11.6 μg/g DW of PPT, PPD, and DD in leaves, respectively. Production of PPT was achieved via cell suspension culture and was highly affected by auxin treatment. The content of PPT in cell suspension was increased 37.25-fold compared with that of leaves of the transgenic tobacco. Transgenic tobacco was not able to set seeds because of microspore degeneration in anthers. Transmission electron microscopy analysis revealed that cells of phloem tissue situated in the center of the anther showed an abnormally condensed nuclei and degenerated mitochondria. Conclusion We successfully achieved the production of PPT in transgenic tobacco. The possible factors deriving male sterility in transgenic tobacco are discussed.
Journal of Ginseng Research | 2017
Jong Youn Kim; Prakash Babu Adhikari; Chang Ho Ahn; Dong Hwi Kim; Young Chang Kim; Jung Yeon Han; Subramanyam Kondeti; Yong Eui Choi
Background Interspecific ginseng hybrid, Panax ginseng × Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on GA3 supplemented medium, were transferred to hormone free ½ Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with GA3 to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on GA3 supplemented medium, were transferred to hormone free ½ SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L GA3 for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The F1 hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides F11 in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.
Journal of Ginseng Research | 2016
Jong Youn Kim; Dong Hwi Kim; Young Chang Kim; Kee Hong Kim; Jung Yeon Han; Yong Eui Choi
Background The low survival rate of in vitro regenerated Panax ginseng plantlets after transfer to soil is the main obstacle for their successful micropropagation and molecular breeding. In most cases, young plantlets converted from somatic embryos are transferred to soil. Methods In vitro thickened taproots, which were produced after prolonged culture of ginseng plantlets, were transferred to soil. Results Taproot thickening of plantlets occurred near hypocotyl and primary roots. Elevated concentration of sucrose in the medium stimulated the root thickening of plantlets. Senescence of shoots occurred following the prolonged culture of plantlets. Once the leaves of plantlets senesced, the buds on taproots developed a dormant tendency. Gibberellic acid treatment was required for dormancy breaking of the buds. Analysis of endogenous abscisic acid revealed that the content of abscisic acid in taproots with senescent shoots was comparatively higher than that of taproots with green shoots. Thickened taproots were transferred to soil, followed by exposure to gibberellic acid or a cold temperature of 2°C for 4 mo. Cold treatment of roots at 2°C for 4 mo resulted in bud sprouting in 84% of roots. Spraying of 100 mg/L gibberellic acid also induced the bud sprouting in 81% roots. Conclusion Soil transfer of dormant taproots of P. ginseng has advantages since they do not require an acclimatization procedure, humidity control of plants, and photoautotrophic growth, and a high soil survival rate was attained.
Korean Journal of Medicinal Crop Science | 2012
Ji Ah Kim; Eung Jun Park; Yong Eui Choi
We have established adventitious root culture systems of Codonopsis lanceolata, Codonopsis pilosula and Codonopsis ussuriensis. Root segments of C. lanceolata were the best explants for induction of adventitious roots and the number of adventitious root for explant was highest on solid medium with NAA and produced roots per explant. Root segments of C. pilosula were the best explants for induction of adventitious roots and the number of adventitious root for explant was highest on solid medium with NAA and produced roots per explant. Leaf segments of C. ussuriensis were the best explants for induction of adventitious roots and the number of adventitious root for explant was highest on solid medium with NAA and produced roots per explant. In liquid culture, the best production of adventitious root (fresh weight) was obtained in 1/2 MS medium with NAA. This study demonstrated for the first time to produce adventitious roots in C. pilosula and C. ussuriensis.
Plant Cell Reports | 2010
Ok Tae Kim; Sun Hee Kim; Kiyoshi Ohyama; Toshiya Muranaka; Yong Eui Choi; Hyeon Yong Lee; Min Young Kim; Baik Hwang