Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong-Fen Qi is active.

Publication


Featured researches published by Yong-Fen Qi.


PLOS ONE | 2012

Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II.

Feifei Ma; Yulin Li; Lixin Jia; Yalei Han; Jizhong Cheng; Hui-Hua Li; Yong-Fen Qi; Jie Du

Interleukin-6 (IL-6) is an important cytokine participating in multiple biologic activities in immune regulation and inflammation. IL-6 has been associated with cardiovascular remodeling. However, the mechanism of IL-6 in hypertensive cardiac fibrosis is still unclear. Angiotensin II (Ang II) infusion in mice increased IL-6 expression in the heart. IL-6 knockout (IL-6-/-) reduced Ang II-induced cardiac fibrosis: 1) Masson trichrome staining showed that Ang II infusion significantly increased fibrotic areas of the wild-type mouse heart, which was greatly suppressed in IL-6-/- mice and 2) immunohistochemistry staining showed decreased expression of α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and collagen I in IL-6-/- mouse heart. The baseline mRNA expression of IL-6 in cardiac fibroblasts was low and was absent in cardiomyocytes or macrophages; however, co-culture of cardiac fibroblasts with macrophages significantly increased IL-6 production and expression of α-SMA and collagen I in fibroblasts. Moreover, TGF-β1 expression and phosphorylation of TGF-β downstream signal Smad3 was stimulated by co-culture of macrophages with cardiac fibroblasts, while IL-6 neutralizing antibody decreased TGF-β1 expression and Smad3 phosphorylation in co-culture of macrophage and fibroblast. Taken together, our results indicate that macrophages stimulate cardiac fibroblasts to produce IL-6, which leads to TGF-β1 production and Smad3 phosphorylation in cardiac fibroblasts and thus stimulates cardiac fibrosis.


PLOS ONE | 2012

Cathepsin S Deficiency Results in Abnormal Accumulation of Autophagosomes in Macrophages and Enhances Ang II–Induced Cardiac Inflammation

Lili Pan; Yulin Li; Lixin Jia; Yanwen Qin; Guanming Qi; Jizhong Cheng; Yong-Fen Qi; Hui-Hua Li; Jie Du

Background Cathepsin S (Cat S) is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II) in mice. Methods and Results Cat S-knockout (Cat S−/−) and littermate wild-type (WT) C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min) or saline for 7 days. Cat S−/− mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA), as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β) were significantly greater in Cat S−/− than WT hearts. These Ang II-induced effects in Cat S−/− mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS) and activation of nuclear factor-kappa B (NF-κB) in macrophages. Conclusion Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis.


PLOS ONE | 2012

Reciprocal Interaction between Macrophages and T cells Stimulates IFN-γ and MCP-1 Production in Ang II-induced Cardiac Inflammation and Fibrosis

Yalei Han; Yulin Li; Lixin Jia; Jizhong Cheng; Yong-Fen Qi; Hongjia Zhang; Jie Du

Background The inflammatory response plays a critical role in hypertension-induced cardiac remodeling. We aimed to study how interaction among inflammatory cells causes inflammatory responses in the process of hypertensive cardiac fibrosis. Methodology/Principal Findings Infusion of angiotensin II (Ang II, 1500 ng/kg/min) in mice rapidly induced the expression of interferon γ (IFN-γ) and leukocytes infiltration into the heart. To determine the role of IFN-γ on cardiac inflammation and remodeling, both wild-type (WT) and IFN-γ-knockout (KO) mice were infused Ang II for 7 days, and were found an equal blood pressure increase. However, knockout of IFN-γ prevented Ang II-induced: 1) infiltration of macrophages and T cells into cardiac tissue; 2) expression of tumor necrosis factor α and monocyte chemoattractant protein 1 (MCP-1), and 3) cardiac fibrosis, including the expression of α-smooth muscle actin and collagen I (all p<0.05). Cultured T cells or macrophages alone expressed very low level of IFN-γ, however, co-culture of T cells and macrophages increased IFN-γ expression by 19.8±0.95 folds (vs. WT macrophage, p<0.001) and 20.9 ± 2.09 folds (vs. WT T cells, p<0.001). In vitro co-culture studies using T cells and macrophages from WT or IFN-γ KO mice demonstrated that T cells were primary source for IFN-γ production. Co-culture of WT macrophages with WT T cells, but not with IFN-γ-knockout T cells, increased IFN-γ production (p<0.01). Moreover, IFN-γ produced by T cells amplified MCP-1 expression in macrophages and stimulated macrophage migration. Conclusions/Significance Reciprocal interaction between macrophages and T cells in heart stimulates IFN-γ expression, leading to increased MCP-1 expression in macrophages, which results a forward-feed recruitment of macrophages, thus contributing to Ang II-induced cardiac inflammation and fibrosis.


Apoptosis | 2013

Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification

Xiao-Hui Duan; Jin-Rui Chang; Jing Zhang; Bao-Hong Zhang; Yulin Li; Xu Teng; Yi Zhu; Jie Du; Chao-Shu Tang; Yong-Fen Qi

Our previous work reported that endoplasmic reticulum stress (ERS)-mediated apoptosis was activated during vascular calcification (VC). Activating transcription factor 4 (ATF4) is a critical transcription factor in osteoblastogenesis and ERS-induced apoptosis. However, whether ATF4 is involved in ERS-mediated apoptosis contributing to VC remains unclear. In the present study, in vivo VC was induced in rats by administering vitamin D3 plus nicotine. Vascular smooth muscle cell (VSMC) calcification in vitro was induced by incubation in calcifying media containing β-glycerophosphate and CaCl2. ERS inhibitors taurine or 4-phenylbutyric acid attenuated ERS and VSMC apoptosis in calcified rat arteries, reduced calcification and retarded the VSMC contractile phenotype transforming into an osteoblast-like phenotype in vivo. Inhibition of ERS retarded the VSMC phenotypic transition into an osteoblast-like cell phenotype and reduced VSMC calcification and apoptosis in vitro. Interestingly, ATF4 was activated in calcified aortas and calcified VSMCs in vitro. ATF4 knockdown attenuated ERS-induced apoptosis in calcified VSMCs. ATF4 deficiency blocked VSMC calcification and negatively regulated the osteoblast phenotypic transition of VSMCs in vitro. Our results demonstrate that ATF4 was involved at least in part in the process of ERS-mediated apoptosis contributing to VC.


PLOS ONE | 2013

Kruppel-like factor 4 transcriptionally regulates TGF-β1 and contributes to cardiac myofibroblast differentiation.

Yi Zhang; Ying Wang; Yan Liu; Nanping Wang; Yong-Fen Qi; Jie Du

Angiotensin II (Ang II) plays a major role in the pathogenesis of cardiac fibrosis in hypertension. It is known that Ang II induces TGF-β1 expression. How transcription mediates Ang II-induced TGF-β1 expression, as well as its contribution to cardiac fibrosis, is unknown. We studied the role of Krüppel-like family transcription factors in Ang II-induced myofibroblast formation. We found that among the Krüppel-like family members, Krüppel-like factor 4 (Klf4) was the highest expressed form in isolated cardiac fibroblasts after Ang II treatment. Klf4 increased expression of α-SMA and collagen, as well as increased myofibroblast formation. ChIP assays showed that Klf4 specifically bound to the TGF-β1 promoter. Deletion and mutagenesis analysis showed that the sites at −184∼−180 bp and −45∼−41 bp in the TGF-β1 promoter were responsible for Klf4 transactivation of the TGF-β1 promoter. Our studies demonstrate that Klf4 plays a pivotal role in Ang II-induced cardiac myofibroblast differentiation and collagen synthesis through transcriptional upregulation of TGF-β1.


Cell Death & Differentiation | 2014

Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization

Min Yang; Jianghua Shao; Yanju Miao; Wei Cui; Yong-Fen Qi; Jiahuai Han; Xia Lin; Jie Du

Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9−/−) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9–B-cell lymphoma/leukemia 10–mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies.


Cardiovascular Research | 2014

Cathepsin S contributes to macrophage migration via degradation of elastic fibre integrity to facilitate vein graft neointimal hyperplasia

Hongtao Shi; Ying Wang; Lixin Jia; Yanwen Qin; Yan Liu; Hui-Hua Li; Yong-Fen Qi; Jie Du

AIMS Cathepsin S (Cat S) is a potent lysosomal protease that is secreted into the extracellular space and has been implicated in elastin and collagen degradation in diseases such as atherosclerosis. Elastin degradation plays an important role in vascular remodelling. However, the mechanism by which Cat regulates this process and its contribution to vein graft remodelling remains unclear. METHODS AND RESULTS Using a murine vein graft model, we examined the expression pattern of Cat family members. Expression of cathepsin genes was induced in vein grafts, with that of Cat S being the highest. Elevated Cat S expression was confirmed in both mouse and human vein grafts. To explore the role of Cat S, vein grafts were created between wild-type (WT) littermates and Cat S knockout (Cat S KO) mice. Knockout of Cat S in the recipients (vein(CatS-KO)-artery(CatS-KO) or vein(WT)-artery(CatS-KO)) significantly inhibited neointima formation and reduced the accumulation of macrophages and proliferation of smooth muscle cells in vein grafts. Knockout of Cat S preserved the elastic fibre integrity of vein grafts and inhibited the migration of macrophages across the elastin fibres. CONCLUSION These results demonstrated that Cat S contributes to macrophage migration via degradation of elastic fibre integrity to facilitate neointima formation of vein grafts, which might provide a novel therapeutic target for preserving vein graft patency.


Cardiovascular Toxicology | 2014

Serum–Glucocorticoid Regulated Kinase 1 Regulates Macrophage Recruitment and Activation Contributing to Monocrotaline-Induced Pulmonary Arterial Hypertension

Xin Xi; Shuang Liu; Hongtao Shi; Min Yang; Yong-Fen Qi; Jian Wang; Jie Du

Sustained inflammation is associated with pulmonary vascular remodeling and arterial hypertension (PAH). Serum–glucocorticoid regulated kinase 1 (SGK1) has been shown to participate in vascular remodeling, but its role in inflammation-associated PAH remains unknown. In this study, the importance of SGK1 expression and activation was investigated on monocrotaline (MCT)-induced PAH, an inflammation-associated experimental model of PAH used in mice and rats. The expression of SGK1 in the lungs of rats with MCT-induced PAH was significantly increased. Furthermore, SGK1 knockout mice were resistant to MCT-induced PAH and showed less elevation of right ventricular systolic pressure and right ventricular hypertrophy and showed reduced pulmonary vascular remodeling in response to MCT injection. Administering the SGK1 inhibitor, EMD638683, to rats also prevented the development of MCT-induced PAH. The expression of SGK1 was shown to take place primarily in alveolar macrophages. EMD638683 treatment suppressed macrophage infiltration and inhibited the proliferation of pulmonary arterial smooth muscle cells (PASMCs) in the lungs of rats with MCT-induced PAH. Co-culture of bone marrow-derived macrophages (BMDMs) from wild-type (WT) mice promoted proliferation of PASMC in vitro, whereas BMDMs from either SGK1 knockout mice or WT mice with EMD638683 treatment failed to induce this response. Collectively, the present results demonstrated that SGK1 is important to the regulation of macrophage activation that contributes to the development of PAH; thus, SGK1 may be a potential therapeutic target for the treatment of PAH.


PLOS ONE | 2013

Knockout of CD8 Delays Reendothelialization and Accelerates Neointima Formation in Injured Arteries of Mouse via TNF-α Inhibiting the Endothelial Cells Migration

Jun-Meng Zhang; Ying Wang; Yan-Ju Miao; Yi Zhang; Yina Wu; Lixin Jia; Yong-Fen Qi; Jie Du

Objective Delayed or impaired reendothelialization is a major cause of stent thrombosis in the interventional treatment of coronary heart disease. T cells are involved in neointima formation of injured arteries. However, the regulated mechanism of reendothelialization and the role of CD8 T cell in reendothelialization are unclear. Methods and Results Immunofluorescence staining showed that CD8 positive cells were increased in wire injured femoral artery of mice. On day 21 after injury, elastin staining showed that knockout of CD8 (CD8−/−) significantly increased intimal thickness and a ratio of intima to media by 1.8 folds and 1.9 folds respectively in injured arteries. Evans blue staining showed that knockout of CD8 delayed the reendothelialization area on day 7 after injury (18.8±0.5% versus 42.1±5.6%, p<0.05). In vitro, a migration assay revealed that CD8−/− T cells co-cultured with WT macrophages significantly inhibited the migration of the endothelial cells (ECs); compared to CD4+ T cells, and CD8+ T cells could promote the ECs migration. Furthermore, real-time PCR analysis showed that knockout of CD8 increased the level of tumor necrosis factor α (TNF-α) in injured arteries and cytometric bead cytokine array showed that TNF-α was elevated in cultured CD8−/− T cells. Finally, a wound-healing assay showed that recombinant TNF-α significantly inhibited the migration of ECs. Conclusion Our study suggested that CD8+ T cells could promote the reendothelialization and inhibit the neointima formation after the artery wire injury, and this effect is at least partly dependent on decreasing TNF-α production promoting ECs migration.


Journal of Molecular and Cellular Cardiology | 2016

Sustained activation of ADP/P2ry12 signaling induces SMC senescence contributing to thoracic aortic aneurysm/dissection

Wen-Mei Zhang; Yan Liu; Tao-Tao Li; Chunmei Piao; Ou Liu; Jun-Ling Liu; Yong-Fen Qi; Lixin Jia; Jie Du

Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. However, the mechanism whereby signaling leads to SMC loss is unclear. We used senescence-associated (SA)-β-gal staining and analysis of expression of senescence-related proteins (p53, p21, p19) to show that excessive mechanical stretch (20% elongation, 3600cycles/h, 48h) induced SMC senescence. SMC senescence was also detected in TAAD specimens from both mice and humans. High-performance liquid chromatography and luciferin-luciferase-based assay revealed that excessive mechanical stretch increased adenosine diphosphate (ADP) release from SMCs both in vivo and in vitro. Elevated ADP induced SMC senescence while genetic knockout of the ADP receptor, P2Y G protein-coupled receptor 12 (P2ry12), in mice protected against SMC senescence and inflammation. Both TAAD formation and rupture were significantly reduced in P2ry12-/- mice. SMCs from P2ry12-/- mice were resistant to senescence induced by excessive mechanical stretch or ADP treatment. Mechanistically, ADP treatment sustained Ras activation, whereas pharmacological inhibition of Ras protected against SMC senescence and reduced TAAD formation. Taken together, excessive mechanical stress may induce a sustained release of ADP and promote SMC senescence via P2ry12-dependent sustained Ras activation, thereby contributing to excessive inflammation and degeneration, which provides insights into TAAD formation and progression.

Collaboration


Dive into the Yong-Fen Qi's collaboration.

Top Co-Authors

Avatar

Jie Du

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Lixin Jia

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Yulin Li

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Hui-Hua Li

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Wen-Mei Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan Liu

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Jizhong Cheng

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chunmei Piao

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Min Yang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Tao-Tao Li

Capital Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge