Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong Guo Zhang is active.

Publication


Featured researches published by Yong Guo Zhang.


Gut | 2003

Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease

Ali Keshavarzian; Ali Banan; Ashkan Farhadi; Sri Komanduri; Ece Mutlu; Yong Guo Zhang; Jeremy Z. Fields

Background: Overproduction of colonic oxidants contributes to mucosal injury in inflammatory bowel disease (IBD) but the mechanisms are unclear. Our recent findings using monolayers of intestinal cells suggest that the mechanism could be oxidant induced damage to cytoskeletal proteins. However, oxidants and oxidative damage have not been well characterised in IBD mucosa. Aims: To determine whether there are increases in oxidants and in tissue and cytoskeletal protein oxidation in IBD mucosa. Methods: We measured nitric oxide (NO) and markers of oxidative injury (carbonylation and nitrotyrosination) to tissue and cytoskeletal proteins in colonic mucosa from IBD patients (ulcerative colitis, Crohn’s disease, specific colitis) and controls. Outcomes were correlated with IBD severity score. Results: Inflamed mucosa showed the greatest increases in oxidants and oxidative damage. Smaller but still significant increases were seen in normal appearing mucosa of patients with active and inactive IBD. Tissue NO levels correlated with oxidative damage. Actin was markedly (>50%) carbonylated and nitrated in inflamed tissues of active IBD, less so in normal appearing tissues. Tubulin carbonylation occurred in parallel; tubulin nitration was not observed. NO and all measures of oxidative damage in tissue and cytoskeletal proteins in the mucosa correlated with IBD severity. Disruption of the actin cytoarchitecture was primarily within the epithelial cells and paracellular area. Conclusions: Oxidant levels increase in IBD along with oxidation of tissue and cytoskeletal proteins. Oxidative injury correlated with disease severity but is also present in substantial amounts in normal appearing mucosa of IBD patients, suggesting that oxidative injury does not necessarily lead to tissue injury and is not entirely a consequence of tissue injury. Marked actin oxidation (>50%)—which appears to result from cumulative oxidative damage—was only seen in inflamed mucosa, suggesting that oxidant induced cytoskeletal disruption is required for tissue injury, mucosal disruption, and IBD flare up.


Gut | 2015

Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis

Shaoping Wu; Yong Guo Zhang; Rong Lu; Yinglin Xia; David Zhou; Elaine O. Petrof; Erika C. Claud; Di Chen; Eugene B. Chang; Geert Carmeliet; Jun Sun

Objective Vitamin D and the vitamin D receptor (VDR) appear to be important immunological regulators of inflammatory bowel diseases (IBD). Defective autophagy has also been implicated in IBD, where interestingly, polymorphisms of genes such as ATG16L1 have been associated with increased risk. Although vitamin D, the microbiome and autophagy are all involved in pathogenesis of IBD, it remains unclear whether these processes are related or function independently. Design We investigated the effects and mechanisms of intestinal epithelial VDR in healthy and inflamed states using cell culture models, a conditional VDR knockout mouse model (VDRΔIEC), colitis models and human samples. Results Absence of intestinal epithelial VDR affects microbial assemblage and increases susceptibility to dextran sulfate sodium-induced colitis. Intestinal epithelial VDR downregulates expressions of ATG16L1 and lysozyme, and impairs antimicrobial function of Paneth cells. Gain and loss-of-function assays showed that VDR levels regulate ATG16L1 and lysozyme at the transcriptional and translational levels. Moreover, low levels of intestinal epithelial VDR correlated with reduced ATG16L1 and representation by intestinal Bacteroides in patients with IBD. Administration of the butyrate (a fermentation product of gut microbes) increases intestinal VDR expression and suppresses inflammation in a colitis model. Conclusions Our study demonstrates fundamental relationship between VDR, autophagy and gut microbial assemblage that is essential for maintaining intestinal homeostasis, but also in contributing to the pathophysiology of IBD. These insights can be leveraged to define therapeutic targets for restoring VDR expression and function.


Clinical Therapeutics | 2015

Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome

Dapeng Jin; Shaoping Wu; Yong Guo Zhang; Rong Lu; Yinglin Xia; Hui Dong; Jun Sun

PURPOSE The microbiome modulates numerous aspects of human physiology and is a crucial factor in the development of various human diseases. Vitamin D deficiency and downregulation of the vitamin D receptor (VDR) are also associated with the pathogenesis of diseases such as inflammatory bowel disease, cancers, obesity, diabetes, and asthma. VDR is a nuclear receptor that regulates the expression of antimicrobial peptides and autophagy regulator ATG16L1. Vitamin D may promote a balanced intestinal microbiome and improve glucose homeostasis in diabetes. However, how VDR regulates microbiome is not well known. In the current study, we hypothesize that VDR status regulates the composition and functions of the intestinal bacterial community. METHODS Fecal and cecal stool samples were harvested from Vdr knockout (Vdr(-/-)) and wild-type mice for bacterial DNA and then sequenced with 454 pyrosequencing. The sequences were denoised and clustered into operational taxonomic units, then queried against the National Center for Biotechnology Information database. Metagenomics were analyzed, and the abundances of genes involved in metabolic pathways were compared by reference to the Kyoto Encyclopedia of Genes and Genomes and Clusters of Orthologous Groups databases. FINDINGS In the Vdr(-/-) mice, Lactobacillus was depleted in the fecal stool, whereas Clostridium and Bacteroides were enriched. Bacterial taxa along the Sphingobacteria-to-Sphingobacteriaceae lineage were enriched, but no genera reached statistical significance. In the cecal stool, Alistipes and Odoribacter were depleted, and Eggerthella was enriched. Notably, all of the taxa upstream of Eggerthella remained unchanged. A comparison of Vdr(-/-) and wild-type samples revealed 40 (26 enriched, 14 depleted) and 72 (41 enriched, 31 depleted) functional modules that were significantly altered in the cecal and fecal microbiomes, respectively (both, P < 0.05), due to the loss of Vdr. In addition to phylogenetic differences in gut microbiome with different intestinal origins, we identify several important pathways, such as nucleotide-binding oligomerization domain-like receptor, affected by Vdr status, including amino acid, carbohydrate, and fatty acid synthesis and metabolism, detoxification, infections, signal transduction, and cancer and other diseases. IMPLICATIONS Our study fills knowledge gaps by having investigated the microbial profile affected by VDR. Insights from our findings can be exploited to develop novel strategies to treat or prevent various diseases by restoring VDR function and healthy microbe-host interactions.


Free Radical Biology and Medicine | 2001

OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability

Ali Banan; L.R. Fitzpatrick; Yong Guo Zhang; Ali Keshavarzian

Rebamipide (OPC-12759), a quinolone derivative, and OPC-6535, a thiazol-carboxylic acid derivative, are compounds with ability to protect gastrointestinal (GI) mucosal integrity against reactive oxygen metabolites (ROM). The underlying mechanism of OPC-mediated protection remains poorly understood. It is now established that ROM can injure the mucosa by disruption of the cytoskeletal network, a key component of mucosal barrier integrity. We, therefore, investigated whether OPC compounds prevent the oxidation, disassembly, and instability of the cytoskeletal protein actin and, in turn, protect intestinal barrier function against ROM. Human intestinal (Caco-2) cell monolayers were pretreated with OPC (-12759 or -6535) prior to incubation with ROM (H2O2) or HOCl). Effects on cell integrity (ethidium homodimer-1), epithelial barrier function (fluorescein sulfonic acid clearance), and actin cytoskeletal integrity (high-resolution laser confocal) were then determined. Cells were also processed for quantitative immunoblotting of G- and F-actin to measure oxidation (carbonylation) and disassembly of actin. In monolayers exposed to ROM, preincubation with OPC compounds prevented actin oxidation, decreased depolymerized G-actin, and enhanced the stable F-actin. Concomitantly, OPC agents abolished both actin cytoskeletal disruption and monolayer barrier dysfunction. Data suggest for the first time that OPC drugs prevent oxidation of actin and lead to the protection of actin cytoskeleton and intestinal barrier integrity against oxidant insult. Accordingly, these compounds may be used as novel therapeutic agents for the treatment of a variety of oxidative inflammatory intestinal disorders with an abnormal mucosal barrier such as inflammatory bowel disease.


Physiological Reports | 2014

Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions

Yong Guo Zhang; Shaoping Wu; Yinglin Xia; Jun Sun

The in vitro analysis of bacterial–epithelial interactions in the intestine has been hampered by a lack of suitable intestinal epithelium culture systems. Here, we report a new experimental model using an organoid culture system to study pathophysiology of bacterial–epithelial interactions post Salmonella infection. Using crypt‐derived mouse intestinal organoids, we were able to visualize the invasiveness of Salmonella and the morphologic changes of the organoids. Importantly, we reported bacteria‐induced disruption of epithelial tight junctions in the infected organoids. In addition, we showed the inflammatory responses through activation of the NF‐κB pathway in the organoids. Moreover, our western blot, PCR, and immunofluorescence data demonstrated that stem cell markers (Lgr5 and Bmi1) were significantly decreased by Salmonella infection (determined using GFP‐labeled Lgr5 organoids). For the first time, we created a model system that recapitulated a number of observations from in vivo studies of the Salmonella‐infected intestine, including bacterial invasion, altered tight junctions, inflammatory responses, and decreased stem cells. We have demonstrated that the Salmonella‐infected organoid culture system is a new experimental model suitable for studying host–bacterial interactions.


Physiological Reports | 2015

Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model

Shaoping Wu; Jianxun Yi; Yong Guo Zhang; Jingsong Zhou; Jun Sun

Emerging evidence has demonstrated that intestinal homeostasis and the microbiome play essential roles in neurological diseases, such as Parkinsons disease. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and muscle atrophy. Currently, there is no effective treatment. Most patients die within 3–5 years due to respiratory paralysis. Although the death of motor neurons is a hallmark of ALS, other organs may also contribute to the disease progression. We examined the gut of an ALS mouse model, G93A, which expresses mutant superoxide dismutase (SOD1G93A), and discovered a damaged tight junction structure and increased permeability with a significant reduction in the expression levels of tight junction protein ZO‐1 and the adherens junction protein E‐cadherin. Furthermore, our data demonstrated increased numbers of abnormal Paneth cells in the intestine of G93A mice. Paneth cells are specialized intestinal epithelial cells that can sense microbes and secrete antimicrobial peptides, thus playing key roles in host innate immune responses and shaping the gut microbiome. A decreased level of the antimicrobial peptides defensin 5 alpha was indeed found in the ALS intestine. These changes were associated with a shifted profile of the intestinal microbiome, including reduced levels of Butyrivibrio Fibrisolvens, Escherichia coli, and Fermicus, in G93A mice. The relative abundance of bacteria was shifted in G93A mice compared to wild‐type mice. Principal coordinate analysis indicated a difference in fecal microbial communities between ALS and wild‐type mice. Taken together, our study suggests a potential novel role of the intestinal epithelium and microbiome in the progression of ALS.


PLOS ONE | 2013

Salmonella Infection Upregulates the Leaky Protein Claudin-2 in Intestinal Epithelial Cells

Yong Guo Zhang; Shaoping Wu; Yinglin Xia; Jun Sun

Background Tight junctions seal the space between adjacent epithelial cells. Mounting evidence suggests that tight junction proteins play a key role in the pathogenesis of human disease. Claudin is a member of the tight junction protein family, which has 24 members in humans. To regulate cellular function, claudins interact structurally and functionally with membrane and scaffolding proteins via their cytoplasmic domain. In particular, claudin-2 is known to be a leaky protein that contributes to inflammatory bowel disease and colon cancer. However, the involvement of claudin-2 in bacterial infection in the intestine remains unknown. Methods/Principal Findings We hypothesized that Salmonella elevates the leaky protein claudin-2 for its own benefit to facilitate bacterial invasion in the colon. Using a Salmonella-colitis mouse model and cultured colonic epithelial cells, we found that pathogenic Salmonella colonization significantly increases the levels of claudin-2 protein and mRNA in the intestine, but not that of claudin-3 or claudin-7 in the colon, in a time-dependent manner. Immunostaining studies showed that the claudin-2 expression along the crypt-villous axis postinfection. In vitro, Salmonella stimulated claudin-2 expression in the human intestinal epithelial cell lines SKCO15 and HT29C19A. Further analysis by siRNA knockdown revealed that claudin-2 is associated with the Salmonella-induced elevation of cell permeability. Epithelial cells with claudin-2 knockdown had significantly less internalized Salmonella than control cells with normal claudin-2 expression. Inhibitor assays demonstrated that this regulation is mediated through activation of the EGFR pathway and the downstream protein JNK. Conclusion/Significance We have shown that Salmonella targets the tight junction protein claudin-2 to facilitate bacterial invasion. We speculate that this disruption of barrier function contributes to a new mechanism by which bacteria interact with their host cells and suggests the possibility of blocking claudin-2 as a potential therapeutic strategy to prevent bacterial invasion.


PLOS ONE | 2010

Chronic Effects of a Salmonella Type III Secretion Effector Protein AvrA In Vivo

Rong Lu; Shaoping Wu; Xingyin Liu; Yinglin Xia; Yong Guo Zhang; Jun Sun

Background Salmonella infection is a common public health problem that can become chronic and increase the risk of inflammatory bowel diseases and cancer. AvrA is a Salmonella bacterial type III secretion effector protein. Increasing evidence demonstrates that AvrA is a multi-functional enzyme with critical roles in inhibiting inflammation, regulating apoptosis, and enhancing proliferation. However, the chronic effects of Salmonella and effector AvrA in vivo are still unknown. Moreover, alive, mutated, non-invasive Salmonella is used as a vector to specifically target cancer cells. However, studies are lacking on chronic infection with non-pathogenic or mutated Salmonella in the host. Methods/Principal Findings We infected mice with Salmonella Typhimurium for 27 weeks and investigated the physiological effects as well as the role of AvrA in intestinal inflammation. We found altered body weight, intestinal pathology, and bacterial translocation in spleen, liver, and gallbladder in chronically Salmonella-infected mice. Moreover, AvrA suppressed intestinal inflammation and inhibited the secretion of cytokines IL-12, IFN-γ, and TNF-α. AvrA expression in Salmonella enhanced its invasion ability. Liver abscess and Salmonella translocation in the gallbladder were observed and may be associated with AvrA expression in Salmonella. Conclusion/Significance We created a mouse model with persistent Salmonella infection in vivo. Our study further emphasizes the importance of the Salmonella effector protein AvrA in intestinal inflammation, bacterial translocation, and chronic infection in vivo.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Consistent activation of the β-catenin pathway by Salmonella type-three secretion effector protein AvrA in chronically infected intestine

Rong Lu; Xingyin Liu; Shaoping Wu; Yinglin Xia; Yong Guo Zhang; Elaine O. Petrof; Erika C. Claud; Jun Sun

Salmonella infection is a common public health problem that can become chronic and increase the risk of cancer. Live, mutated Salmonella is used to target cancer cells. However, few studies have addressed chronic Salmonella infection in vivo. AvrA is a Salmonella type-three secretion effector that is multifunctional, inhibiting intestinal inflammation and enhancing proliferation. β-catenin is a key player in intestinal renewal, inflammation, and tumorigenesis. We hypothesize that in Salmonella-infected intestine, AvrA chronically activates the β-catenin pathway and increases cell proliferation, thus deregulating the intestinal responses to bacterial infection. We followed mice with Salmonella infection for 27 wk and investigated the physiological effects and role of AvrA on β-catenin in chronically infected intestine. We found that AvrA persistently regulated β-catenin posttranslational modifications, including phosphorylation and acetylation. Moreover, the upstream regulator Akt, transcription factors, T cell factors, nuclear β-catenin, and β-catenin target genes were enhanced in mice infected with Salmonella-expressing AvrA. AvrA has a chronic functional role in promoting intestinal renewal. In summary, we have uncovered an essential role of Salmonella AvrA in chronically activating β-catenin and impacting intestinal renewal in small intestine and colon. Our study emphasizes the importance of AvrA in chronic bacterial infection.


Clinical Therapeutics | 2017

Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis

Yong Guo Zhang; Shaoping Wu; Jianxun Yi; Yinglin Xia; Dapeng Jin; Jingsong Zhou; Jun Sun

PURPOSE Emerging evidence has demonstrated that gut microbiome plays essential roles in the pathogenesis of human diseases in distal organs. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Treatment with the only drug approved by the US Food and Drug Administration for use in ALS, riluzole, extends a patient׳s life span by only a few months. Thus, there is an urgent need to develop novel interventions that for alleviate disease progression and improve quality of life in patients with ALS. Here we present evidence that intestinal dysfunction and dysbiosis may actively contribute to ALS pathophysiology. METHODS We used G93A transgenic mice as a model of human ALS. The G93A mice show abnormal intestinal microbiome and damaged tight junctions before ALS disease onset. The mice were given 2% butyrate, a natural bacterial product, in the drinking water. RESULTS In mice fed with butyrate, intestinal microbial homeostasis was restored, gut integrity was improved, and life span was prolonged compared with those in control mice. At the cellular level, abnormal Paneth cells-specialized intestinal epithelial cells that regulate the host-bacterial interactions-were significantly decreased in the ALS mice treated with butyrate. In both ALS mice and intestinal epithelial cells cultured from humans, butyrate treatment was associated with decreased aggregation of the G93A superoxide dismutase 1 mutated protein. IMPLICATIONS The findings from this study highlight the complex role of the gut microbiome and intestinal epithelium in the progression of ALS and present butyrate as a potential therapeutic reagent for restoring ALS-related dysbiosis.

Collaboration


Dive into the Yong Guo Zhang's collaboration.

Top Co-Authors

Avatar

Jun Sun

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Shaoping Wu

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rong Lu

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yinglin Xia

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Ali Banan

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ali Keshavarzian

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Chen

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeremy Z. Fields

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge