Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong-Guy Kim is active.

Publication


Featured researches published by Yong-Guy Kim.


International Journal of Food Microbiology | 2015

Cinnamon bark oil and its components inhibit biofilm formation and toxin production.

Yong-Guy Kim; Jin-Hyung Lee; Soon Il Kim; Kwang-Hyun Baek; Jintae Lee

The long-term usage of antibiotics has resulted in the evolution of multidrug resistant bacteria, and pathogenic biofilms contribute to reduced susceptibility to antibiotics. In this study, 83 essential oils were initially screened for biofilm inhibition against Pseudomonas aeruginosa. Cinnamon bark oil and its main constituent cinnamaldehyde at 0.05% (v/v) markedly inhibited P. aeruginosa biofilm formation. Furthermore, cinnamon bark oil and eugenol decreased the production of pyocyanin and 2-heptyl-3-hydroxy-4(1H)-quinolone, the swarming motility, and the hemolytic activity of P. aeruginosa. Also, cinnamon bark oil, cinnamaldehyde, and eugenol at 0.01% (v/v) significantly decreased biofilm formation of enterohemorrhagic Escherichia coli O157:H7 (EHEC). Transcriptional analysis showed that cinnamon bark oil down-regulated curli genes and Shiga-like toxin gene stx2 in EHEC. In addition, biodegradable poly(lactic-co-glycolic acid) film incorporating biofilm inhibitors was fabricated and shown to provide efficient biofilm control on solid surfaces. This is the first report that cinnamon bark oil and its components, cinnamaldehyde and eugenol, reduce the production of pyocyanin and PQS, the swarming motility, and the hemolytic activity of P. aeruginosa, and inhibit EHEC biofilm formation.


Microbiological Research | 2014

ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production

Jin-Hyung Lee; Yong-Guy Kim; Moo Hwan Cho; Jintae Lee

The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens.


Phytomedicine | 2014

Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7.

Jin-Hyung Lee; Yong-Guy Kim; Hyun Seob Cho; Shi Yong Ryu; Moo Hwan Cho; Jintae Lee

E. coli O157:H7 is the most common cause of hemorrhagic colitis, and no effective therapy exists for E. coli O157:H7 infection. Biofilm formation is closely related to E. coli O157:H7 infection and constitutes a mechanism of antimicrobial resistance. Hence, the antibiofilm or antivirulence approach provides an alternative to antibiotic strategies. Coumarin and its derivatives have a broad range of biological effects, and in this study, the antibiofilm activities of nine coumarins were investigated against E. coli O157:H7. Coumarin or umbelliferone at 50μg/ml was found to inhibit biofilm E. coli O157:H7 formation by more than 80% without affecting bacterial growth. Transcriptional analysis showed that coumarins repressed curli genes and motility genes in E. coli O157:H7, and these findings were in-line with observed reductions in fimbriae production, swarming motility, and biofilm formation. In addition, esculetin repressed Shiga-like toxin gene stx2 in E. coli O157:H7 and attenuated its virulence in vivo in the nematode Caenorhabditis elegans. These findings show that coumarins have potential use in antivirulence strategies against persistent E. coli O157:H7 infection.


International Journal of Food Microbiology | 2014

Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation.

Jin-Hyung Lee; Yong-Guy Kim; Shi Yong Ryu; Moo Hwan Cho; Jintae Lee

Infection by enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a worldwide problem, and there is no effective therapy. Biofilm formation is closely related to EHEC infection and is also a mechanism of antimicrobial resistance. Antibiofilm screening of 560 purified phytochemicals against EHEC showed that ginkgolic acids C15:1 and C17:1 at 5μg/ml and Ginkgo biloba extract at 100μg/ml significantly inhibited EHEC biofilm formation on the surfaces of polystyrene and glass, and on nylon membranes. Importantly, at their working concentrations, ginkgolic acids and G. biloba extract did not affect bacterial growth. Transcriptional analyses showed that ginkgolic acid C15:1 repressed curli genes and prophage genes in EHEC, and these findings were in-line with reduced fimbriae production and biofilm reductions. Interestingly, ginkgolic acids and G. biloba extract did not inhibit the biofilm formation of a commensal E. coli K-12 strain. In addition, ginkgolic acids and G. biloba extract inhibited the biofilm formation of three Staphylococcus aureus strains. The findings of this study suggest that plant secondary metabolites represent an important resource for biofilm inhibitors.


Biofouling | 2014

‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes

Roy Bernstein; Viatcheslav Freger; Jin-Hyung Lee; Yong-Guy Kim; Jintae Lee; Moshe Herzberg

A number of techniques are used for testing the anti-biofouling activity of surfaces, yet the correlation between different results is often questionable. In this report, the correlation between initial bacterial deposition (fast tests, reported previously) and biofilm growth (much slower tests) was analyzed on a pristine and a surface-modified reverse osmosis membrane ESPA-1. The membrane was modified with grafted hydrophilic polymers bearing negatively charged, positively charged and zwitter-ionic moieties. Using three different bacterial strains it was found that there was no general correlation between the initial bacterial deposition rates and biofilm growth on surfaces, the reasons being different for each modified surface. For the negatively charged surface the slowest deposition due to the charge repulsion was eventually succeeded by the largest biofilm growth, probably due to secretion of extracellular polymeric substances (EPS) that mediated a strong attachment. For the positively charged surface, short-term charge attraction by quaternary amine groups led to the fastest deposition, but could be eventually overridden by their antimicrobial activity, resulting in non-consistent results where in some cases a lower biofilm formation rate was observed. The results indicate that initial deposition rates have to be used and interpreted with great care, when used for assessing the anti-biofouling activity of surfaces. However, for a weakly interacting ‘low-fouling’ zwitter-ionic surface, the positive correlation between initial cell deposition and biofilm growth, especially under flow, suggests that for this type of coating initial deposition tests may be fairly indicative of anti-biofouling potential.


Current Microbiology | 2011

Transcriptomic Analysis for Genetic Mechanisms of the Factors Related to Biofilm Formation in Escherichia coli O157:H7

Jin-Hyung Lee; Yong-Guy Kim; Moo Hwan Cho; Thomas K. Wood; Jintae Lee

Two lineages of enterohemorrhagic Escherichia coli O157:H7 (EDL933, Stx1+ and Stx2+) and 86-24 (Stx2+) were investigated to determine the genetic basis of biofilm formation on abiotic surfaces. Strain EDL933 formed a robust biofilm while strain 86-24 formed almost no biofilm on either polystyrene plates or polyethylene tubes. Whole-transcriptome profiles of EDL933 versus 86-24 revealed that in the strong biofilm-forming strain, genes involved in curli biosynthesis and cellulose production were significantly induced, whereas genes involved in indole signaling were most repressed. Additionally, 49 phage genes were highly induced and repressed between the two strains. Curli assays using Congo red plates and scanning electron microscopy corroborated the microarray data as the EDL933 strain produced a large amount of curli, while strain 86-24 formed much less curli. Moreover, EDL933 produced 19-fold more cellulose than 86-24, and indole production in EDL933 was two times lower than that of the strain 86-24. Therefore, it appears E. coli O157:H7 EDL933 produces more biofilm because of its increased curli and cellulose production and reduced indole production.


BMC Microbiology | 2011

Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei

Yong-Guy Kim; Jin-Hyung Lee; Moo Hwan Cho; Jintae Lee

BackgroundBacteria use diverse signaling molecules to ensure the survival of the species in environmental niches. A variety of both Gram-positive and Gram-negative bacteria produce large quantities of indole that functions as an intercellular signal controlling diverse aspects of bacterial physiology.ResultsIn this study, we sought a novel role of indole in a Gram-positive bacteria Paenibacillus alvei that can produce extracellular indole at a concentration of up to 300 μM in the stationary phase in Luria-Bertani medium. Unlike previous studies, our data show that the production of indole in P. alvei is strictly controlled by catabolite repression since the addition of glucose and glycerol completely turns off the indole production. The addition of exogenous indole markedly inhibits the heat resistance of P. alvei without affecting cell growth. Observation of cell morphology with electron microscopy shows that indole inhibits the development of spore coats and cortex in P. alvei. As a result of the immature spore formation of P. alvei, indole also decreases P. alvei survival when exposed to antibiotics, low pH, and ethanol. Additionally, indole derivatives also influence the heat resistance; for example, a plant auxin, 3-indolylacetonitrile dramatically (2900-fold) decreased the heat resistance of P. alvei, while another auxin 3-indoleacetic acid had a less significant influence on the heat resistance of P. alvei.ConclusionsTogether, our results demonstrate that indole and plant auxin 3-indolylacetonitrile inhibit spore maturation of P. alvei and that 3-indolylacetonitrile presents an opportunity for the control of heat and antimicrobial resistant spores of Gram-positive bacteria.


Scientific Reports | 2016

Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus

Jin-Hyung Lee; Yong-Guy Kim; Shi Yong Ryu; Jintae Lee

Staphylococcal biofilms are problematic and play a critical role in the persistence of chronic infections because of their abilities to tolerate antimicrobial agents. Thus, the inhibitions of biofilm formation and/or toxin production are viewed as alternative means of controlling Staphylococcus aureus infections. Here, the antibiofilm activities of 560 purified phytochemicals were examined. Alizarin at 10 μg/ml was found to efficiently inhibit biofilm formation by three S. aureus strains and a Staphylococcus epidermidis strain. In addition, two other anthraquinones purpurin and quinalizarin were found to have antibiofilm activity. Binding of Ca2+ by alizarin decreased S. aureus biofilm formation and a calcium-specific chelating agent suppressed the effect of calcium. These three anthraquinones also markedly inhibited the hemolytic activity of S. aureus, and in-line with their antibiofilm activities, increased cell aggregation. A chemical structure-activity relationship study revealed that two hydroxyl units at the C-1 and C-2 positions of anthraquinone play important roles in antibiofilm and anti-hemolytic activities. Transcriptional analyses showed that alizarin repressed the α-hemolysin hla gene, biofilm-related genes (psmα, rbf, and spa), and modulated the expressions of cid/lrg genes (the holin/antiholin system). These findings suggest anthraquinones, especially alizarin, are potentially useful for controlling biofilm formation and the virulence of S. aureus.


Environmental Microbiology | 2015

The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens

Jin-Hyung Lee; Yong-Guy Kim; Kwang-Hyun Baek; Moo Hwan Cho; Jintae Lee

Bacteria utilize signal molecules to ensure their survival in environmental niches, and indole is an interspecies and interkingdom signalling molecule, which is widespread in the natural environment. In this study, we sought to identify novel roles of indole in soil-borne bacterium Agrobacterium tumefaciens. Agrobacterium tumefaciens was found not to synthesize indole and to degrade it rapidly. The addition of exogenous indole dose-dependently inhibited A. tumefaciens growth and decreased its motility. Surprisingly, indole markedly increased A. tumefaciens biofilm formation on polystyrene, glass and nylon membrane surfaces and enhanced its antibiotic tolerance. Transcriptional analysis showed that indole markedly up-regulated several biofilm-related (celA, cheA, exoR, phoB, flgE, fliR and motA), stress-related genes (clpB, dnaK, gsp, gyrB, marR and soxR) and efflux genes (emrA, norM, and Atu2551) in A. tumefaciens, which partially explained the increased biofilm formation and antibiotic tolerance. In contrast, the plant auxin indole-3-acetic acid did not affect biofilm formation, antibiotic tolerance or gene expression. Interestingly, indole was found to exhibit several similarities with antibiotics, as it inhibited the growth of non-indole-producing bacteria, whereas these bacteria countered its effects by rapidly degrading indole, and by enhancing biofilm formation and antibiotic tolerance.


Applied Microbiology and Biotechnology | 2012

Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation

Jin-Hyung Lee; Yong-Guy Kim; Chang-Jin Kim; Jae-Chan Lee; Moo Hwan Cho; Jintae Lee

Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify nontoxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, the spent media of a 4,104 Actinomycetes library was screened. The culture spent medium (1%, v/v) of plant pathogen Rhodococcus sp. BFI 332 markedly inhibited E. coli O157:H7 biofilm formation without affecting the growth of planktonic E. coli O157:H7 cells. Rhodococcus sp. BFI 332 produced significant amounts of indole-3-acetaldehyde and indole-3-acetic acid, and the former of which reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses showed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that spent medium of Rhodococcus sp. BFI 332 and indole-3-acetaldehyde reduced curli production in E. coli O157:H7. The spent medium of Rhodococcus sp. BFI 332 also significantly reduced the biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis. Overall, this study suggests that indole derivatives are present in the Actinomycetes strains and they can be used as biofilm inhibitors against pathogenic bacteria.

Collaboration


Dive into the Yong-Guy Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang-Jin Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jae-Chan Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Thomas K. Wood

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge