Yong He
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yong He.
Biomaterials | 2015
Qing Gao; Yong He; Jianzhong Fu; An Liu; Liang Ma
This study offers a novel 3D bioprinting method based on hollow calcium alginate filaments by using a coaxial nozzle, in which high strength cell-laden hydrogel 3D structures with built-in microchannels can be fabricated by controlling the crosslinking time to realize fusion of adjacent hollow filaments. A 3D bioprinting system with a Z-shape platform was used to realize layer-by-layer fabrication of cell-laden hydrogel structures. Curving, straight, stretched or fractured filaments can be formed by changes to the filament extrusion speed or the platform movement speed. To print a 3D structure, we first adjusted the concentration and flow rate of the sodium alginate and calcium chloride solution in the crosslinking process to get partially crosslinked filaments. Next, a motorized XY stages with the coaxial nozzle attached was used to control adjacent hollow filament deposition in the precise location for fusion. Then the Z stage attached with a Z-shape platform moved down sequentially to print layers of structure. And the printing process always kept the top two layers fusing and the below layers solidifying. Finally, the Z stage moved down to keep the printed structure immersed in the CaCl2 solution for complete crosslinking. The mechanical properties of the resulting fused structures were investigated. High-strength structures can be formed using higher concentrations of sodium alginate solution with smaller distance between adjacent hollow filaments. In addition, cell viability of this method was investigated, and the findings show that the viability of L929 mouse fibroblasts in the hollow constructs was higher than that in alginate structures without built-in microchannels. Compared with other bioprinting methods, this study is an important technique to allow easy fabrication of lager-scale organs with built-in microchannels.
Scientific Reports | 2015
Yong He; Guang-huai Xue; Jianzhong Fu
Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about
Scientific Reports | 2016
Yong He; FeiFei Yang; Haiming Zhao; Qing Gao; Bing Xia; Jianzhong Fu
30, which is much lower than the current soft prostheses fabrication methods.
RSC Advances | 2015
Yong He; Yan Wu; Jian-zhong Fu; Wen-Bin Wu
As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.
Scientific Reports | 2016
An Liu; Guang-huai Xue; Miao Sun; Huifeng Shao; Chiyuan Ma; Qing Gao; Zhongru Gou; Shigui Yan; Yanming Liu; Yong He
When compared with conventional microfluidic chips made of glass and polymer substrates, paper-based microfluidic analysis devices (μPADs) possess many unique advantages, including low-cost, easy-to-fabricate, strong capillary action and good biological compatibility. In recent years, μPADs have attracted increased interest and attention, which has led to their rapid development. Thousands of literature reports regarding μPADs have been published and a variety of μPADs fabrication methods have been reported. This review focuses on the development of the fabrication methods of 2D and 3D μPADs since 2007. A summary of the advantages and disadvantages of these methods is provided with particular attention paid to the resolution and cost of each method. Suitable applications of each method are discussed. Also, some trends of μPADs are summarized.
RSC Advances | 2015
Yong He; Wen-Bin Wu; Jianzhong Fu
Desktop three-dimensional (3D) printers (D3DPs) have become a popular tool for fabricating personalized consumer products, favored for low cost, easy operation, and other advantageous qualities. This study focused on the potential for using D3DPs to successfully, rapidly, and economically print customized implants at medical clinics. An experiment was conducted on a D3DP-printed anterior cruciate ligament surgical implant using a rabbit model. A well-defined, orthogonal, porous PLA screw-like scaffold was printed, then coated with hydroxyapatite (HA) to improve its osteoconductivity. As an internal fixation as well as an ideal cell delivery system, the osteogenic scaffold loaded with mesenchymal stem cells (MSCs) were evaluated through both in vitro and in vivo tests to observe bone-ligament healing via cell therapy. The MSCs suspended in Pluronic F-127 hydrogel on PLA/HA screw-like scaffold showed the highest cell proliferation and osteogenesis in vitro. In vivo assessment of rabbit anterior cruciate ligament models for 4 and 12 weeks showed that the PLA/HA screw-like scaffold loaded with MSCs suspended in Pluronic F-127 hydrogel exhibited significant bone ingrowth and bone-graft interface formation within the bone tunnel. Overall, the results of this study demonstrate that fabricating surgical implants at the clinic (fab@clinic) with D3DPs can be feasible, effective, and economical.
Journal of Dairy Science | 2008
Di Wu; Shuijuan Feng; Yong He
In this study, we developed a novel and facile method for fabricating paper-based microfluidic analytical devices (μPADs) with dynamic mask photo curing (DMPC), generated by a desktop stereolithography (SL) three-dimensional printer (3DP). First, we immersed the filter paper in ultraviolet (UV) resin to cover it evenly. Next, we exposed it to UV-light through a dynamic mask of the negative channel pattern. After curing, the UV-exposed regions become highly hydrophobic, creating hydrophobic barriers. Finally, we washed the uncured resin with anhydrous alcohol and fine μPADs were obtained. The resolution of the fabricated hydrophilic channels was 367 ± 20 μm, with a between-channel hydrophobic barrier of 400 ± 21 μm. To verify this methods performance, we fabricated μPADs with DMPC for quantitative analysis of nitrite ion. This new method represents a leap forward in terms of time saved. Since all hydrophobic barriers are cured at a time, the fabrication process can be completed in only two minutes, no matter how complex the patterns are. Compared to the widely used fabrication method of μPADs, wax printing, DMPC provides an alternative way to fabricate μPAD with different hydrophobic barriers materials, which provides the possibility of designing different μPADs according to the application environments.
Sensors | 2015
Chu Zhang; Fei Liu; Wenwen Kong; Yong He
The aim of the present paper was to provide new insight into the short-wave near-infrared (NIR) spectroscopic analysis of milk powder. Near-infrared spectra in the 800- to 1,025-nm region of 350 samples were analyzed to determine the brands and quality of milk powders. Brand identification was done by a least squares support vector machine (LS-SVM) model coupled with fast fixed-point independent component analysis (ICA). The correct answer rate of the ICA-LS-SVM model reached as high as 98%, which was better than that of the LS-SVM (95%). Contents of fat, protein, and carbohydrate were determined by the LS-SVM and ICA-LS-SVM models. Both processes offered good determination performance for analyzing the main components in milk powder based on short-wave NIR spectra. The coefficients of determination for prediction and root mean square error of prediction of ICA-LS-SVM were 0.983, 0.231, and 0.982, and 0.161, 0.980, and 0.410, respectively, for the 3 components. However, there were less than 10 input variables in the ICA-LS-SVM model compared with 225 in the LS-SVM model. Thus, the processing time was much shorter and the model was simpler. The results presented in this paper demonstrate that the short-wave NIR region is promising for fast and reliable determination of the brand and main components in milk powder.
Journal of Applied Physics | 2011
Jiaguo Qi; J.F. Liu; Yong He; W.Q. Chen; Chuanyong Wang
Visible and near-infrared hyperspectral imaging covering spectral range of 380–1030 nm as a rapid and non-destructive method was applied to estimate the soluble protein content of oilseed rape leaves. Average spectrum (500–900 nm) of the region of interest (ROI) of each sample was extracted, and four samples out of 128 samples were defined as outliers by Monte Carlo-partial least squares (MCPLS). Partial least squares (PLS) model using full spectra obtained dependable performance with the correlation coefficient (rp) of 0.9441, root mean square error of prediction (RMSEP) of 0.1658 mg/g and residual prediction deviation (RPD) of 2.98. The weighted regression coefficient (Bw), successive projections algorithm (SPA) and genetic algorithm-partial least squares (GAPLS) selected 18, 15, and 16 sensitive wavelengths, respectively. SPA-PLS model obtained the best performance with rp of 0.9554, RMSEP of 0.1538 mg/g and RPD of 3.25. Distribution of protein content within the rape leaves were visualized and mapped on the basis of the SPA-PLS model. The overall results indicated that hyperspectral imaging could be used to determine and visualize the soluble protein content of rape leaves.
Biofabrication | 2015
Huifeng Shao; Xianyan Yang; Yong He; Jianzhong Fu; Limin Liu; Liang Ma; Lei Zhang; Guojing Yang; Changyou Gao; Zhongru Gou
High-pressure behaviors of bixbyite-type cubic In2O3 nanocrystals with an average grain size of 6.0 nm and bulk In2O3 samples were investigated by in situ high-pressure synchrotron radiation x-ray diffraction measurements up to 40 GPa at ambient temperature. It was found that nanosized and bulk samples began to transform from cubic into hexagonal structure at about 15–25 GPa and extended up to 40 GPa. Both cubic and hexagonal phases remained after pressure release. Below the onset transition pressure, the nanosized samples were harder to compress with a larger bulk modulus of 296.06 GPa than the bulk samples with a bulk modulus of 178.87 GPa.