Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong Hui Lee is active.

Publication


Featured researches published by Yong Hui Lee.


Nano Letters | 2010

High-Performance Nanostructured Inorganic−Organic Heterojunction Solar Cells

Jeong Ah Chang; Jae Hui Rhee; Sang Hyuk Im; Yong Hui Lee; Hi-jung Kim; Sang Il Seok; Md. K. Nazeeruddin; Michael Grätzel

We report all solid-state nanostructured inorganic-organic heterojunction solar cells fabricated by depositing Sb(2)S(3) and poly(3-hexylthiophene) (P3HT) on the surface of a mesoporous TiO(2) layer, where Sb(2)S(3) acts as an absorbing semiconductor and P3HT acts as both a hole conductor and light absorber. These inorganic-organic light harvesters perform remarkably well with a maximum incident-photon-to-current efficiency (IPCE) of 80% and power conversion efficiency of 5.13% under air-mass 1.5 global (AM 1.5G) illumination with the intensity of 100 mW cm(-2). These devices are highly stable under room light in air, even without encapsulation. The present findings offer novel directions for achieving high-efficiency solid-state solar cells by hybridization of inorganic-organic light harvesters and hole transporters.


Nature Communications | 2016

Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells

Simone Meloni; Thomas Moehl; Wolfgang Tress; Marius Franckevičius; Michael Saliba; Yong Hui Lee; Peng Gao; Mohammad Khaja Nazeeruddin; Shaik Mohammed Zakeeruddin; Ursula Rothlisberger; Michael Graetzel

CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current–voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA+ rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.


ACS Nano | 2012

From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells

Pablo P. Boix; Yong Hui Lee; Francisco Fabregat-Santiago; Sang Hyuk Im; Iván Mora-Seró; Juan Bisquert; Sang Il Seok

Nanoporous metal oxide electrodes provide a high internal area for dye anchoring in dye-sensitized solar cells, but the thickness required to extinguish the solar photons also enhances recombination at the TiO(2)/electrolyte interface. The high extinction coefficient of inorganic semiconductor absorber should allow the reduction of the film thickness, improving the photovoltage. Here we study all-solid semiconductor sensitized solar cells, in the promising TiO(2)/Sb(2)S(3)/P3HT configuration. Flat and nanostructured cells have been prepared and analyzed, developing a cell performance model, based on impedance spectroscopy results, that allows us to determine the impact of the reduction of metal oxide film thickness on the operation of the solar cell. Decreasing the effective surface area toward the limit of flat samples produces a reduction in the recombination rate, increasing the open circuit potential, V(oc), while providing a significant photocurrent. However, charge compensation problems as a consequence of inefficient charge screening in flat cells increase the hole transport resistance, lowering severely the cell fill factor. The use of novel structures balancing recombination and hole transport will enhance solid sensitized cell performance.


Chemistry: A European Journal | 2014

Efficient Perovskite Solar Cells with 13.63 % Efficiency Based on Planar Triphenylamine Hole Conductors

Hyeju Choi; Sanghyun Paek; Namwoo Lim; Yong Hui Lee; Mohammad Khaja Nazeeruddin; Jaejung Ko

A new type of hole transporting material (HTMs) with an incorporated planar amine or triphenylamine as a core unit have been prepared. The two amine derivatives were demonstrated to be efficient hole transporting materials in fabricating solid-state organic-inorganic hybrid solar cells. Perovskite-based solar cells with a planar amine derivative gave a short circuit photocurrent density (Jsc) of 20.98 m Acm(-2), an open circuit voltage (Voc) of 0.972 V, and a fill factor of 0.67, corresponding to an overall conversion efficiency of 13.63 %. The photovoltaic performance is comparable to that of the standard spiro-OMeTAD. Moreover, the device showed good stability under light soaking for 500 h. These HTMs hold promise to replace the expensive spiro-OMeTAD because of their high efficiency, excellent stability, synthesis from simple and inexpensive materials.


Advanced Materials | 2016

Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells

Yong Hui Lee; Jingshan Luo; Min-Kyu Son; Peng Gao; Kyung Taek Cho; Ji-Youn Seo; Shaik M. Zakeeruddin; Michael Grätzel; Mohammad Khaja Nazeeruddin

The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing.


Journal of Materials Chemistry | 2015

Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2

Flannan T. F. O'Mahony; Yong Hui Lee; Cameron Jellett; Stoichko Dmitrov; Daniel Bryant; James R. Durrant; Brian C. O'Regan; Michael Graetzel; Mohammad Khaja Nazeeruddin; Saif A. Haque

Impressive hybrid photovoltaic device performances have been realised with the methylammonium lead triiodide (MAPbI3) perovskite absorber in a wide range of device architectures. However, the question as to which of these systems represents the most commercially viable long-term prospect is yet to be answered conclusively. Here, we report on the photoinduced charge transfer processes in MAPbI3 based films measured under inert and ambient conditions. When exposed to ambient conditions, the coated mesoporous Al2O3 and bilayer systems show a rapid and significant degradation in the yield of long-lived charge separation. This process, which does not affect sensitized-mesoporous TiO2 films, is only found to occur when both light and oxygen are present. These observations indicate that the presence of a mesostructured TiO2 electron acceptor to rapidly extract the photoexcited electron from the perovskite sensitizer may be crucial for fundamental photovoltaic stability and significantly increases innate tolerance to environmental conditions. This work highlights a significant advantage of retaining mesoscale morphological control in the design of perovskite photovoltaics.


ACS Applied Materials & Interfaces | 2010

Improved Photovoltaic Response of Nanocrystalline CdS-Sensitized Solar Cells through Interface Control

Jae-Yeol Hwang; Sang-A Lee; Yong Hui Lee; Sang-Il Seok

Nanocrystalline CdS-sensitized solar cells (CdS-SSCs) based on mesoporous TiO(2) were fabricated by the spray pyrolysis deposition method. The energy conversion efficiency of these cells was drastically increased (156%) by modifying the junction structure through post-treatment that included soaking in a dilute TiCl(4) aqueous solution and subsequent thermal annealing. We propose that the post-treatment is responsible for an increased number of interconnections between TiO(2) and CdS, as well as surface passivation of the CdS sensitizer. The increase in the cell efficiency is attributed to the improved charge carrier transport, suppression of photoelectron recombination with holes both in the same sensitizer particle and in nearby ones, and suppression of photoelectron capture by the electrolyte.


Langmuir | 2010

Quantum-Dot-Sensitized Solar Cells Fabricated by the Combined Process of the Direct Attachment of Colloidal CdSe Quantum Dots Having a ZnS Glue Layer and Spray Pyrolysis Deposition

Sang Hyuk Im; Yong Hui Lee; Sang Il Seok; Sungwoo Kim; Sang-Wook Kim

We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.


Journal of Materials Chemistry | 2012

Hole-conducting mediator for stable Sb2S3-sensitized photoelectrochemical solar cells

Choong-Sun Lim; Sang Hyuk Im; Jae Hui Rhee; Yong Hui Lee; Hi-jung Kim; Nilkamal Maiti; Yongku Kang; Jeong Ah Chang; Md. K. Nazeeruddin; Michael Grätzel; Sang Il Seok

Iodide redox (3I−/I3−), polysulfide redox (S2−/Sx2−), organic redox [TMTU/TMFDS2+: tetramethylthiourea/tetramethylformaminium-bis(trifluoromethanesulfonyl)imide], ferrocene redox (Fc/Fc+), nickel redox [Ni(II)/Ni(III)], and cobalt redox [Co(II)/Co(III)] hole conducting electrolytes were systematically investigated to determine their suitability for use in Sb2S3-sensitized photoelectrochemical solar cells. A long-term stability test and UV-visible spectral analyses revealed that Sb2S3-sensitized photoelectrochemical solar cells worked stably with Co(II)(o-phen)3(TFSI)2/Co(III)(o-phen)3(TFSI)3 [TFSI: bis(trifluoromethanesulfonyl)imide] as the redox mediator.


Journal of Materials Chemistry C | 2016

Ultrafast charge carrier dynamics in CH3NH3PbI3: evidence for hot hole injection into spiro-OMeTAD

Jan C. Brauer; Yong Hui Lee; Mohammad Khaja Nazeeruddin; Natalie Banerji

Hybrid organic–inorganic metal perovskites have emerged as highly promising materials for solar energy conversion. However, key questions regarding the working principles of perovskite solar cells remain to be answered in order to improve the design of such devices. In the present study, we have investigated the influence of excess excitation energy on the initial photo-products generated from FTO/meso-TiO2/CH3NH3PbI3 samples. We find that upon resonant excitation at the band edge, part of the formation of free charges passes via an excitonic state that dissociates on the sub-picosecond time scale. An exciton binding energy of <10 meV is estimated from the lifetime of the exciton. On the other hand, if excess energy is available, free charges are directly generated. We have then investigated the hole injection into spiro-OMeTAD at the CH3NH3PbI3/spiro-OMeTAD interface. By following spectroscopically the generation of the oxidized form of the molecular hole conductor spiro-OMeTAD, we confirm that the hole injection is essentially ultrafast and occurs on the sub-80 femtosecond time scale. On this time scale, the hole injection competes with carrier cooling after photo-excitation and therefore the charge injection can occur from non-thermalised states.

Collaboration


Dive into the Yong Hui Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong Ah Chang

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Sang Il Seok

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mohammad Khaja Nazeeruddin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Sang Il Seok

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hi-jung Kim

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Choong-Sun Lim

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Michael Grätzel

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jae Hui Rhee

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Nilkamal Maiti

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge