Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong Hui Zheng is active.

Publication


Featured researches published by Yong Hui Zheng.


Journal of Virology | 2004

Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication.

Yong Hui Zheng; Dan Irwin; Takeshi Kurosu; Kenzo Tokunaga; Tetsutaro Sata; B. Matija Peterlin

ABSTRACT Recently, APOBEC3G has been identified as a host factor that blocks retroviral replication. It introduces G to A hypermutations in newly synthesized minus strand viral cDNA at the step of reverse transcription in target cells. Here, we identified the human APOBEC3F protein as another host factor that blocks human immunodeficiency virus type 1 (HIV-1) replication. Similar to APOBEC3G, APOBEC3F also induced G to A hypermutations in HIV genomic DNA, and the viral Vif protein counteracted its activity. Thus, APOBEC family members might have evolved as a general defense mechanism of the body against retroviruses, retrotransposons, and other mobile genetic elements.


Journal of Virology | 2006

Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family

Ying Dang; Xiaojun Wang; Walter J. Esselman; Yong Hui Zheng

ABSTRACT A tandem arrayed gene cluster encoding seven cytidine deaminase genes is present on human chromosome 22. These are APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H. Three of them, APOBEC3G, APOBEC3F, and APOBEC3B, block replication of human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. In addition, APOBEC3A and APOBEC3C block intracellular retrotransposons and simian immunodeficiency virus (SIV), respectively. In opposition to APOBEC genes, HIV-1 and SIV contain a virion infectivity factor (Vif) that targets APOBEC3F and APOBEC3G for polyubiquitylation and proteasomal degradation. Herein, we studied the antiretroviral activities of the human APOBEC3DE and APOBEC3H. We found that only APOBEC3DE had antiretroviral activity for HIV-1 or SIV and that Vif suppressed this antiviral activity. APOBEC3DE was encapsidated and capable of deaminating cytosines to uracils on viral minus-strand DNA, resulting in disruption of the viral life cycle. Other than GG-to-AG and AG-to-AA mutations, it had a novel target site specificity, resulting in introduction of GC-to-AC mutations on viral plus-strand DNA. Such mutations have been detected previously in HIV-1 clinical isolates. In addition, APOBEC3DE was expressed much more extensively than APOBEC3F in various human tissues and it formed heteromultimers with APOBEC3F or APOBEC3G in the cell. From these studies, we concluded that APOBEC3DE is a new contributor to the intracellular defense network, resulting in suppression of retroviral invasion.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Nef increases the synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virions

Yong Hui Zheng; Ana Plemenitaš; Christopher J. Fielding; B. Matija Peterlin

HIV buds from lipid rafts and requires cholesterol for its egress from and entry into cells. Viral accessory protein Nef plays a major role in this process. In this study, it not only increased the biosynthesis of lipid rafts and viral particles with newly synthesized cholesterol, but also enriched them. Furthermore, via the consensus cholesterol recognition motif at its C terminus, Nef bound cholesterol. When this sequence was mutated, Nef became unable to transport newly synthesized cholesterol into lipid rafts and viral particles. Interestingly, although its levels in lipid rafts were not affected, this mutant Nef protein was poorly incorporated into viral particles, and viral infectivity decreased dramatically. Thus, Nef also transports newly synthesized cholesterol to the site of viral budding. As such, it provides essential building blocks for the formation of viruses that replicate optimally in the host.


Current Biology | 2001

Nef increases infectivity of HIV via lipid rafts

Yong Hui Zheng; Ana Plemenitaš; Thomas Linnemann; Oliver T. Fackler; B. Matija Peterlin

Lipid rafts, also known as detergent-resistant membranes (DRM), are microdomains in the plasma membrane enriched in sphingolipids and cholesterol (reviewed in [1, 2]). Human immunodeficiency virus 1 (HIV) buds via lipid rafts [3, 4]. However, the targeting of viral structural components to DRM and its consequences for viral replication are not understood. Moreover, the negative factor Nef from HIV increases viral infectivity (reviewed in [5, 6]). With no apparent differences in structural components and morphology between wild-type and DeltaNef virons, the latter viruses display less efficient reverse transcription in target cells. As Nef is expressed abundantly early in the viral replicative cycle [7], we hypothesized that Nef could affect viral morphogenesis and budding to render viruses more infectious. In this report, we demonstrated first that Nef increases viral budding from lipid rafts. Second, in the presence of Nef, viral envelopes contain more ganglioside (GM1), which is a major component of lipid rafts. This finding correlated directly with the increased infectivity of HIV. Finally, the depletion of exogenous and endogenous cholesterol biochemically and genetically, which disrupted lipid rafts, decreased viral infectivity only in the presence of Nef. Importantly, HIV lacking the nef gene remained unaffected by these manipulations. We conclude that lipids in virions are essential for viral infectivity. Thus, HIV becomes more infectious when it buds from lipid rafts, and Nef plays a major role in this process.


Journal of Biological Chemistry | 2002

Subunit H of the V-ATPase Binds to the Medium Chain of Adaptor Protein Complex 2 and Connects Nef to the Endocytic Machinery

Matthias Geyer; Haifeng Yu; Robert Mandic; Thomas Linnemann; Yong Hui Zheng; Oliver T. Fackler; B. Matija Peterlin

Nef is an accessory protein of human and simian immunodeficiency viruses (HIV and SIV) that is required for efficient viral infectivity and pathogenicity. It decreases the expression of CD4 on the surface of infected cells. V1H is the regulatory subunit H of the vacuolar membrane ATPase (V-ATPase). Previously, the interaction between Nef and V1H has been found to facilitate the internalization of CD4, suggesting that V1H could connect Nef to the endocytic machinery. In this study, we demonstrate that V1H binds to the C-terminal flexible loop in Nef from HIV-1 and to the medium chain (μ2) of the adaptor protein complex 2 (AP-2) in vitro and in vivo. The interaction sites of V1H and μ2 were mapped to a central region in V1H from positions 133 to 363, which contains 4 armadillo repeats, and to the N-terminal adaptin-binding domain in μ2 from positions 1 to 145. Fusing Nef to V1H reproduced the appropriate trafficking of Nef. This chimera internalized CD4 even in the absence of the C-terminal flexible loop in Nef. Finally, blocking the expression of V1H decreased the enhancement of virion infectivity by Nef. Thus, V1H can function as an adaptor for interactions between Nef and AP-2.


Journal of Biological Chemistry | 2008

Human cytidine deaminase APOBEC3H restricts HIV-1 replication.

Ying Dang; Lai Mun Siew; Xiaojun Wang; Yanxing Han; Russell Lampen; Yong Hui Zheng

The human genome encodes seven APOBEC3 (A3) cytidine deaminases with potential antiretroviral activity: A3A, A3B, A3C, A3DE, A3F, A3G, and A3H. A3G was the first identified to block replication of human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. A3F, A3B, and A3DE were shown later to have similar activities. HIV-1 produces a protein called Vif that is able to neutralize the antiretroviral activities of A3DE, A3F, and A3G, but not A3B. Only the antiretroviral activity of A3H remains to be defined due to its poor expression in cell culture. Here, we studied the mechanism impairing A3H expression. When primate A3H sequences were compared, a premature termination codon was identified on the fifth exon of the human and chimpanzee A3H genes, which significantly decreased their protein expression. It causes a 29-residue deletion from the C terminus, and this truncation did not reduce human A3H protein stability. However, the mRNA levels of the truncated gene were significantly decreased. Human A3H protein expression could be restored to a normal level either by repairing this truncation or through expression from a vector containing an intron from human cytomegalovirus. Once expression was optimized, human A3H could reduce HIV-1 infectivity up to 150-fold. Importantly, HIV-1 Vif failed to neutralize A3H activity. Nevertheless, extensive sequence analysis could not detect any significant levels of G-to-A mutation in the HIV-1 genome by human A3H. Thus, A3H inhibits HIV-1 replication potently by a cytidine deamination-independent mechanism, and optimizing A3H expression in vivo should represent a novel therapeutic strategy for HIV-1 treatment.


Nature Cell Biology | 2003

Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells

Yong Hui Zheng; Haifeng Yu; B. Matija Peterlin

In the mouse, replication of human immunodeficiency virus type 1 (HIV) is blocked at the levels of entry, transcription and assembly. For the latter effect, the amounts of unspliced viral genomic RNA could have an important function. Indeed, in murine cells, HIV transcripts are spliced excessively, a process that is not inhibited by the murine splicing inhibitor p32 (mp32). In marked contrast, its human counterpart, hp32, not only blocks this splicing but promotes the accumulation of viral genomic transcripts and structural proteins, resulting in the assembly and release of infectious virions. A single substitution in hp32 of Gly 35 to Asp 35, which is found in mp32, abrogates this activity. Thus, hp32 overcomes an important post-transcriptional block to HIV replication in murine cells.


Journal of Virology | 2009

Identification of a Novel WxSLVK Motif in the N Terminus of Human Immunodeficiency Virus and Simian Immunodeficiency Virus Vif That Is Critical for APOBEC3G and APOBEC3F Neutralization

Ying Dang; Xiaojun Wang; Tao Zhou; Ian A. York; Yong Hui Zheng

ABSTRACT The function of lentiviral Vif proteins is to neutralize the host antiviral cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F). Vif bridges a cullin 5-based E3 ubiquitin ligase with A3G and A3F and mediates their degradation by proteasomes. Recent studies have found that Vif uses different domains to bind to A3G and A3F. A 14DRMR17 domain binds to A3F, 40YRHHY44 binds to A3G, and 69YxxL72 binds to both A3G and A3F. Here, we report another functional domain of Vif. Previously, we demonstrated that human immunodeficiency virus type 1 (HIV-1) Vif failed to mediate A3G proteasomal degradation when all 16 lysines were mutated to arginines. Here, we show that K26, and to a lesser extent K22, is critical for A3G neutralization. K22 and K26 are part of a conserved 21WxSLVK26 (x represents N, K, or H) motif that is found in most primate lentiviruses and that shows species-specific variation. Both K22 and K26 in this motif regulated Vif specificity only for A3G, whereas the SLV residues regulated Vif specificity for both A3F and A3G. Interestingly, SLV and K26 in HIV-1 Vif did not directly mediate Vif interaction with either A3G or A3F. Previously, other groups have reported an important role for W21 in A3F and A3G neutralization. Thus, 21WxSLVK26 is a novel functional domain that regulates Vif activity toward both A3F and A3G and is a potential drug target to inhibit Vif activity and block HIV-1 replication.


Journal of Biological Chemistry | 2010

Moloney Leukemia Virus 10 (MOV10) Protein Inhibits Retrovirus Replication

Xiaojun Wang; Yanxing Han; Ying Dang; William Fu; Tao Zhou; Roger G. Ptak; Yong Hui Zheng

Moloney leukemia virus 10 (MOV10) protein is a superfamily-1 RNA helicase, and it is also a component of the RNA-induced silencing complex. Recent studies have shown that MOV10 plays an active role in the RNA interference pathway. Here, we report that MOV10 inhibits retrovirus replication. When it was overexpressed in viral producer cells, MOV10 was able to reduce the infectivity of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus, and murine leukemia virus. Conversely, when MOV10 expression was reduced by small interfering RNAs, HIV-1 infectivity was increased. Consistently, silencing of MOV10 expression in a human T cell line enhanced HIV-1 replication. Furthermore, we found that MOV10 interacts with HIV-1 nucleocapsid protein in an RNA-dependent manner and is packaged into virions. It blocks HIV-1 replication at a postentry step. In addition, we also found that HIV-1 could suppress MOV10 protein expression to counteract this cellular resistance. All of these results indicate that MOV10 has a broad antiretroviral activity that can target a wide range of retroviruses, and it could be actively involved in host defense against retroviral infection.


Retrovirology | 2012

Host restriction factors in retroviral infection: promises in virus-host interaction

Yong Hui Zheng; Kuan Teh Jeang; Kenzo Tokunaga

Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs), and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.

Collaboration


Dive into the Yong Hui Zheng's collaboration.

Top Co-Authors

Avatar

Ying Dang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Tao Zhou

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanxing Han

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takaaki Nakaya

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yuji Kono

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge