Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong Kyoung Yoo is active.

Publication


Featured researches published by Yong Kyoung Yoo.


Applied Physics Letters | 2014

Enhanced sensitivity of piezoelectric pressure sensor with microstructured polydimethylsiloxane layer

Wook Choi; Junwoo Lee; Yong Kyoung Yoo; Sungchul Kang; Jinseok Kim; Jeong Hoon Lee

Highly sensitive detection tools that measure pressure and force are essential in palpation as well as real-time pressure monitoring in biomedical applications. So far, measurement has mainly been done by force sensing resistors and field effect transistor (FET) sensors for monitoring biological pressure and force sensing. We report a pressure sensor by the combination of a piezoelectric sensor layer integrated with a microstructured Polydimethylsiloxane (μ-PDMS) layer. We propose an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source that is used in FET sensors, by incorporating a microstructured PDMS layer in a piezoelectric sensor. By measuring the directly induced electrical charge from the microstructure-enhanced piezoelectric signal, we observed a 3-fold increased sensitivity in a signal response. Both fast signal relaxation from force removal and wide dynamic range from 0.23 to 10 kPa illustrate the good feasibility of the thin film piezoelectric sensor...


Analytical Chemistry | 2012

Multifunctionalized cantilever systems for electronic nose applications.

Yong Kyoung Yoo; Myung-Sic Chae; Ji Yoon Kang; Tae Song Kim; Kyo Seon Hwang; Jeong Hoon Lee

Multiple target detection using a cantilever is essential for biosensor, chemical sensor, and electronic nose systems. We report a novel microcantilever array chip that includes four microreaction chambers in a chip, which consequently contains four different functionalized surfaces for multitarget detection. For model tests, we designed microcantilever chips and demonstrated the ability of binding of 2,4-dinitrotoluene (DNT) targets onto four different surfaces. We used peptide receptors that are known to have highly selective binding. By simply using four microreaction chambers, we immobilized DNT specific peptide (HPNFSKYILHQRC; SP), DNT nonspecific peptide (TSMLLMSPKHQAC; NSP), and self-assembled monolayer (SAM) as well as a bare cantilever. After flowing DNT gases through the cantilever chip, we could monitor the four different binding signals simultaneously. The shifts in NSP provided information as a negative control because it contained information of temperature fluctuations and mechanical vibration from gas flow. By utilizing the differential signal of the SP and NSP, we acquired 7.5 Hz in resonant responses that corresponds with 160 part per billion (ppb) DNT concentration, showing the exact binding response by eliminating the inevitable thermal noise, vibration noise, as well as humidity effects on the peptide surface.


Scientific Reports | 2015

Single-carbon discrimination by selected peptides for individual detection of volatile organic compounds

Soomi Ju; Ki-Young Lee; Sun-Joon Min; Yong Kyoung Yoo; Kyo Seon Hwang; Sang Kyung Kim; Hyunjung Yi

Although volatile organic compounds (VOCs) are becoming increasingly recognized as harmful agents and potential biomarkers, selective detection of the organic targets remains a tremendous challenge. Among the materials being investigated for target recognition, peptides are attractive candidates because of their chemical robustness, divergence, and their homology to natural olfactory receptors. Using a combinatorial peptide library and either a graphitic surface or phenyl-terminated self-assembled monolayer as relevant target surfaces, we successfully selected three interesting peptides that differentiate a single carbon deviation among benzene and its analogues. The heterogeneity of the designed target surfaces provided peptides with varying affinity toward targeted molecules and generated a set of selective peptides that complemented each other. Microcantilever sensors conjugated with each peptide quantitated benzene, toluene and xylene to sub-ppm levels in real time. The selection of specific receptors for a group of volatile molecules will provide a strong foundation for general approach to individually monitoring VOCs.


Sensors | 2014

A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor

Junwoo Lee; Wook Choi; Yong Kyoung Yoo; Kyo Seon Hwang; Sang-Myung Lee; Sungchul Kang; Jinseok Kim; Jeong Hoon Lee

The ability to measure pressure and force is essential in biomedical applications such as minimally invasive surgery (MIS) and palpation for detecting cancer cysts. Here, we report a force sensor for measuring a shear and normal force by combining an arrayed piezoelectric sensors layer with a precut glass top plate connected by four stress concentrating legs. We designed and fabricated a thin film piezoelectric force sensor and proposed an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source used in FET sensors. Both the linear sensor response from 3 kPa to 30 kPa and the exact signal responses from the moving direction illustrate the strong feasibility of the described thin film miniaturized piezoelectric force sensor.


Biosensors and Bioelectronics | 2016

Sensitivity improvement of an electrical sensor achieved by control of biomolecules based on the negative dielectrophoretic force.

Hye Jin Kim; Jinsik Kim; Yong Kyoung Yoo; Jeong Hoon Lee; Jung Ho Park; Kyo Seon Hwang

Effective control of nano-scale biomolecules can enhance the sensitivity and limit of detection of an interdigitated microelectrode (IME) sensor. Manipulation of the biomolecules by dielectrophoresis (DEP), especially the negative DEP (nDEP) force, so that they are trapped between electrodes (sensing regions) was predicted to increase the binding efficiency of the antibody and target molecules, leading to a more effective reaction. To prove this concept, amyloid beta 42 (Aβ42) and prostate specific antigen (PSA) protein were respectively trapped between the sensing region owing to the nDEP force under 5V and 0.05V, which was verified with COMSOL simulation. Using the simulation value, the resistance change (ΔR/Rb) of the IME sensor from the specific antibody-antigen reaction of the two biomolecules and the change in fluorescence intensity were compared in the reference (pDEP) and nDEP conditions. The ΔR/Rb value improved by about 2-fold and 1.66-fold with nDEP compared to the reference condition with various protein concentrations, and these increases were confirmed with fluorescence imaging. Overall, nDEP enhanced the detection sensitivity for Aβ42 and PSA by 128% and 258%, respectively, and the limit of detection improved by up to 2-orders of magnitude. These results prove that DEP can improve the biosensors performance.


Scientific Reports | 2016

Ultra-sensitive detection of brain-derived neurotrophic factor (BDNF) in the brain of freely moving mice using an interdigitated microelectrode (IME) biosensor

Yong Kyoung Yoo; Jaekwang Lee; Jinsik Kim; Gangeun Kim; Sunpil Kim; Jeong Yeon Kim; Heejung Chun; Jeong Hoon Lee; C. Justin Lee; Kyo Seon Hwang

Brain-derived neurotrophic factor (BDNF) plays a critical role in cognitive processes including learning and memory. However, it has been difficult to detect BDNF in the brains of behaving animals because of its extremely low concentration, i.e., at the sub-nanogram/mL level. Here, we developed an interdigitated microelectrode (IME) biosensor coated with an anti-BDNF an anti-BDNF antibody in a polydimethylsiloxane (PDMS)-based microfluidic channel chip. This sensor could detect BDNF from microliter volumes of liquid samples even at femtogram/mL concentrations with high selectivity over other growth factors. Using this biosensor, we examined whether BDNF is detectable from periodical collection of cerebrospinal fluid microdialysate, sampled every 10 min from the hippocampus of mice during the context-dependent fear-conditioning test. We found that the IME biosensor could detect a significant increase in BDNF levels after the memory task. This increase in BDNF levels was prevented by gene silencing of BDNF, indicating that the IME biosensor reliably detected BDNF in vivo. We propose that the IME biosensor provides a general-purpose probe for ultrasensitive detection of biomolecules with low abundance in the brains of behaving animals.


Sensors | 2015

A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor

Myung-Sic Chae; Jinsik Kim; Yong Kyoung Yoo; Ji Yoon Kang; Jeong Hoon Lee; Kyo Seon Hwang

Preventing unexpected explosive attacks and tracing explosion-related molecules require the development of highly sensitive gas-vapor detection systems. For that purpose, a micromechanical cantilever-based olfactory sensing system including a sample preconcentrator was developed to detect 2,4-dinitrotoluene (2,4-DNT), which is a well-known by-product of the explosive molecule trinitrotoluene (TNT) and exists in concentrations on the order of parts per billion in the atmosphere at room temperature. A peptide receptor (His-Pro-Asn-Phe-Ser-Lys-Tyr-Ile-Leu-His-Gln-Arg) that has high binding affinity for 2,4-DNT was immobilized on the surface of the cantilever sensors to detect 2,4-DNT vapor for highly selective detection. A micro-preconcentrator (µPC) was developed using Tenax-TA adsorbent to produce higher concentrations of 2,4-DNT molecules. The preconcentration was achieved via adsorption and thermal desorption phenomena occurring between target molecules and the adsorbent. The µPC directly integrated with a cantilever sensor and enhanced the sensitivity of the cantilever sensor as a pretreatment tool for the target vapor. The response was rapidly saturated within 5 min and sustained for more than 10 min when the concentrated vapor was introduced. By calculating preconcentration factor values, we verified that the cantilever sensor provides up to an eightfold improvement in sensing performance.


Japanese Journal of Applied Physics | 2014

Flexible and stretchable energy harvesting device using three-dimensional poly(dimethylsiloxane)

Sung Il Han; Kyo Seon Hwang; Yong Kyoung Yoo; Sang-Myung Lee; Jeong Hoon Lee

We propose a flexible stretchable energy harvesting device by implementing permselective pores on a poly(dimethylsiloxane) (PDMS) sheet for the direct energy conversion of pressure to electrical power. The devices consist of five layers of PDMS, giving full flexibility to the devices. From current–voltage (I–V) measurements, we observed down-shifts in the limiting regime with strains, demonstrating that the permselective pores act as nanofluidic channels. We clearly observed that the limiting region shifts to lower voltages, illustrating that the cross-sectional dimensions were changed, thereby enhancing the ion concentration polarization with external strains. Simply by manual mechanical bending, we acquired a streaming current of 400 nA.


Sensors | 2017

Study of Alzheimer’s Disease-Related Biophysical Kinetics with a Microslit-Embedded Cantilever Sensor in a Liquid Environment

Myung Sic Chae; Jinsik Kim; Yong Kyoung Yoo; Jeong Hoon Lee; Tae Geun Kim; Kyo Seon Hwang

A microsized slit-embedded cantilever sensor (slit cantilever) was fabricated and evaluated as a biosensing platform in a liquid environment. In order to minimize the degradation caused by viscous damping, a 300 × 100 µm2 (length × width) sized cantilever was released by a 5 µm gap-surrounding and vibrated by an internal piezoelectric-driven self-actuator. Owing to the structure, when the single side of the slit cantilever was exposed to liquid a significant quality factor (Q = 35) could be achieved. To assess the sensing performance, the slit cantilever was exploited to study the biophysical kinetics related to Aβ peptide. First, the quantification of Aβ peptide with a concentration of 10 pg/mL to 1 μg/mL was performed. The resonant responses exhibited a dynamic range from 100 pg/mL to 100 ng/mL (−56.5 to −774 ΔHz) and a dissociation constant (KD) of binding affinity was calculated as 1.75 nM. Finally, the Aβ self-aggregation associated with AD pathogenesis was monitored by adding monomeric Aβ peptides. As the concentration of added analyte increased from 100 ng/mL to 10 µg/mL, both the frequency shift values (−813 to −1804 ΔHz) and associate time constant increased. These results showed the excellent sensing performance of the slit cantilever overcoming a major drawback in liquid environments to become a promising diagnostic tool candidate.


Journal of Nanomaterials | 2018

Sputtered PdO Decorated TiO2 Sensing Layer for a Hydrogen Gas Sensor

Jeong Hoon Lee; Seungmin Kwak; Jinhyung Lee; In-Ho Kim; Yong Kyoung Yoo; Tae Hoon Lee; Young-Seok Shim; Jinseok Kim; Kyu Hyoung Lee

We report a sputtered PdO decorated TiO2 sensing layer by radiofrequency (RF) sputtering methods and demonstrated gas sensing performance for H2 gas. We prepared sputtered anatase TiO2 sensing films with 200 nm thickness and deposited a Pd layer on top of the TiO2 films with a thickness ranging from 3 nm to 13 nm. Using an in situ TiO2/Pd multilayer annealing process at 550°C for 1 hour, we observed that Pd turns into PdO by Auger electron spectroscopy (AES) depth profile and confirmed decorated PdO on TiO2 sensing layer from scanning electron microscope (SEM) and atomic-force microscope (AFM). We also observed a positive sensing signal for 3, 4.5, and 6.5 nm PdO decorated TiO2 sensor while we observed negative output signal for a 13.5 nm PdO decorated one. Using a microheater platform, we acquired fast response time as ~11 sec and sensitivity as 6 μV/ppm for 3 nm PdO under 33 mW power.

Collaboration


Dive into the Yong Kyoung Yoo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myung-Sic Chae

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ji Yoon Kang

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jinsik Kim

Kigali Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tae Song Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jinseok Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge