Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongbin Zhao is active.

Publication


Featured researches published by Yongbin Zhao.


American Journal of Physical Anthropology | 2011

Ancient DNA Evidence Supports the Contribution of Di-Qiang People to the Han Chinese Gene Pool

Yongbin Zhao; Hongjie Li; Sheng-Nan Li; Yu Cc; Shizhu Gao; Zhi Xu; Li Jin; Hong Zhu; Hui Zhou

Han Chinese is the largest ethnic group in the world. During its development, it gradually integrated with many neighboring populations. To uncover the origin of the Han Chinese, ancient DNA analysis was performed on the remains of 46 humans (1700 to 1900 years ago) excavated from the Taojiazhai site in Qinghai province, northwest of China, where the Di-Qiang populations had previously lived. In this study, eight mtDNA haplogroups (A, B, D, F, M*, M10, N9a, and Z) and one Y-chromosome haplogroup (O3) were identified. All analyses show that the Taojiazhai population presents close genetic affinity to Tibeto-Burman populations (descendants of Di-Qiang populations) and Han Chinese, suggesting that the Di-Qiang populations may have contributed to the Han Chinese genetic pool.


Journal of Human Genetics | 2011

Genetic characteristics and migration history of a bronze culture population in the West Liao-River valley revealed by ancient DNA.

Hongjie Li; Xin Zhao; Yongbin Zhao; Chunxiang Li; Dayong Si; Hui Zhou; Yinqiu Cui

In order to study the genetic characteristics of the Lower Xiajiadian culture (LXC) population, a main bronze culture branch in northern China dated 4500–3500 years ago, two uniparentally inherited markers, mitochondrial DNA and Y-chromosome single-nucleotide polymorphisms (Y-SNPs), were analyzed on 14 human remains excavated from the Dadianzi site. The 14 sequences, which contained 13 haplotypes, were assigned to 9 haplogroups, and Y-SNP typing of 5 male individuals assigned them to haplogroups N (M231) and O3 (M122). The results indicate that the LXC population mainly included people carrying haplogroups from northern Asia who had lived in this region since the Neolithic period, as well as genetic evidence of immigration from the Central Plain. Later in the Bronze Age, part of the population migrated to the south away from a cooler climate, which ultimately influenced the gene pool in the Central Plain. Thus, climate change is an important factor, which drove the population migration during the Bronze Age in northern China. Based on these results, the local genetic continuity did not seem to be affected by outward migration, although more data are needed especially from other ancient populations to determine the influence of return migration on genetic continuity.


American Journal of Physical Anthropology | 2015

Ancient DNA reveals a migration of the ancient Di-qiang populations into Xinjiang as early as the early Bronze Age.

Shizhu Gao; Ye Zhang; Dong Wei; Hongjie Li; Yongbin Zhao; Yinqiu Cui; Hui Zhou

Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty-nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y-chromosomal DNA analyses combined with the archaeological studies revealed that the Di-qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age.


Journal of Human Genetics | 2010

Ancient DNA from nomads in 2500-year-old archeological sites of Pengyang, China.

Yongbin Zhao; Hongjie Li; Dawei Cai; Chunxiang Li; Quanchao Zhang; Hong Zhu; Hui Zhou

Six human remains (dating ∼2500 years ago) were excavated from Pengyang, China, an area occupied by both ancient nomadic and farming people. The funerary objects found with these remains suggested they were nomads. To further confirm their ancestry, we analyzed both the maternal lineages and paternal lineages of the ancient DNA. From the mitochondrial DNA, six haplotypes were identified as three haplogroups: C, D4 and M10. The haplotype-sharing populations and phylogenetic analyses revealed that these individuals were closely associated with the ancient Xiongnu and modern northern Asians. Single-nucleotide polymorphism analysis of Y chromosomes from four male samples that were typed as haplogroup Q indicated that these people had originated in Siberia. These results show that these ancient people from Pengyang present a close genetic affinity to nomadic people, indicating that northern nomads had reached the Central Plain area of China nearly 2500 years ago.


PLOS ONE | 2015

Ancient DNA Reveals That the Genetic Structure of the Northern Han Chinese Was Shaped Prior to 3,000 Years Ago

Yongbin Zhao; Ye Zhang; Quanchao Zhang; Hongjie Li; Ying-Qiu Cui; Zhi Xu; Li Jin; Hui Zhou; Hong Zhu

The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.


American Journal of Human Biology | 2014

Ancient DNA evidence reveals that the Y chromosome haplogroup Q1a1 admixed into the Han Chinese 3,000 years ago

Yongbin Zhao; Ye Zhang; Hongjie Li; Ying-Qiu Cui; Hong Zhu; Hui Zhou

Y chromosome haplogroup Q1a1 is found almost only in Han Chinese populations. However, it has not been found in ancient Han Chinese samples until now. Thus, the origin of haplogroup Q1a1 in Han Chinese is still obscure. This study attempts to provide answer to this question, and to uncover the origin and paternal genetic structure of the ancestors of the Han Chinese.


Russian Journal of Genetics | 2014

Genetic analyses of Xianbei populations about 1,500-1,800 years old.

Yu Cc; Yongbin Zhao; Hui Zhou

To understand the profile of genetic structure of Xianbei and trace its impacts on the formation and development of the minorities from northern China, we analyzed the sequences of the hypervariable segment I (HVS-I, 16.035–16.398) in mtDNA control region of 17 Tuoba Xianbei remains from Shangdu Dongdajing cemetery (Inner Mongolia). Its haplotype diversity and nucleotide diversity were 0.971 ± 0.032 and 0.0184 ± 0.010, respectively, and the haplogroup status presented 29.5% C, 23.5% D4, 17.6% D5, 17.6%A, 5.9% B and 5.9% G. When the data from Qilang Mountain Tuoba remains and other relevant populations were considered, we found that Dongdajing Tuoba Xianbei presented the closest genetic affinity to Qilang Mountain Tuoba Xianbei. Tuoba Xianbei and Murong Xianbei showed a significant differentiation in the maternal lineages. Tuoba Xianbei may contribute to the gene pool of some northern minorities, and it may mix with Xiongnu in northern China.


Journal of Human Genetics | 2018

The Y-chromosome haplogroup C3*-F3918, likely attributed to the Mongol Empire, can be traced to a 2500-year-old nomadic group

Ye Zhang; Xiyan Wu; Jiawei Li; Hongjie Li; Yongbin Zhao; Hui Zhou

The Mongol Empire had a significant role in shaping the landscape of modern populations. Many populations living in Eurasia may have been the product of population mixture between ancient Mongolians and natives following the expansion of Mongol Empire. Geneticists have found that most of these populations carried the Y-haplogroup C3* (C-M217). To trace the history of haplogroup (Hg) C3* and to further understand the origin and development of Mongolians, ancient human remains from the Jinggouzi, Chenwugou and Gangga archaeological sites, which belonged to the Donghu, Xianbei and Shiwei, respectively, were analysed. Our results show that nine of the eleven males of the Gangga site, two of the eight males of Chengwugou site and all of the twelve males of Jinggouzi site were found to have mutations at M130 (Hg C), M217 (Hg C3), L1373 (C2b, ISOGG2015), with the absence of mutations at M93 (Hg C3a), P39 (Hg C3b), M48 (Hg C3c), M407 (Hg C3d) and P62 (Hg C3f). These samples were attributed to the Y-chromosome Hg C3* (Hg C2b, ISOGG2015), and most of them were further typed as Hg C2b1a based on the mutation at F3918. Finally, we inferred that the Y-chromosome Hg C3*-F3918 can trace its origins to the Donghu ancient nomadic group.


Journal of Human Genetics | 2017

Genetic diversity of two Neolithic populations provides evidence of farming expansions in North China

Ye Zhang; Jiawei Li; Yongbin Zhao; Xiyan Wu; Hongjie Li; Lu Yao; Hong Zhu; Hui Zhou

The West Liao River Valley and the Yellow River Valley are recognized Neolithic farming centers in North China. The population dynamics between these two centers have significantly contributed to the present-day genetic patterns and the agricultural advances of North China. To understand the Neolithic farming expansions between the West Liao River Valley and the Yellow River Valley, we analyzed mitochondrial DNA (mtDNA) and the Y chromosome of 48 individuals from two archeological sites, Jiangjialiang (>3000 BC) and Sanguan (~1500 BC). These two sites are situated between the two farming centers and experienced a subsistence shift from hunting to farming. We did not find a significant difference in the mtDNA, but their genetic variations in the Y chromosome were different. Individuals from the Jiangjialiang belonged to two Y haplogroups, N1 (not N1a or N1c) and N1c. The individuals from the Sanguan are Y haplogroup O3. Two stages of migration are supported. Populations from the West Liao River Valley spread south at about 3000 BC, and a second northward expansion from the Yellow River Valley occurred later (3000–1500 BC).


American Journal of Physical Anthropology | 2018

The genome of an ancient Rouran individual reveals an important paternal lineage in the Donghu population

Jiawei Li; Ye Zhang; Yongbin Zhao; Yongzhi Chen; A. Ochir; Sarenbilige; Hong Zhu; Hui Zhou

OBJECTIVES Following the Xiongnu and Xianbei, the Rouran Khaganate (Rouran) was the third great nomadic tribe on the Mongolian Steppe. However, few human remains from this tribe are available for archaeologists and geneticists to study, as traces of the tombs of these nomadic people have rarely been found. In 2014, the IA-M1 remains (TL1) at the Khermen Tal site from the Rouran period were found by a Sino-Mongolian joint archaeological team in Mongolia, providing precious material for research into the genetic imprint of the Rouran. MATERIALS AND METHODS The mtDNA hypervariable sequence I (HVS-I) and Y-chromosome SNPs were analyzed, and capture of the paternal non-recombining region of the Y chromosome (NRY) and whole-genome shotgun sequencing of TL1 were performed. The materials from three sites representing the three ancient nationalities (Donghu, Xianbei, and Shiwei) were selected for comparison with the TL1 individual. RESULTS The mitochondrial haplotype of the TL1 individual was D4b1a2a1. The Y-chromosome haplotype was C2b1a1b/F3830 (ISOGG 2015), which was the same as that of the other two ancient male nomadic samples (ZHS5 and GG3) related to the Xianbei and Shiwei, which were also detected as F3889; this haplotype was reported to be downstream of F3830 by Wei et al. (). DISCUSSION We conclude that F3889 downstream of F3830 is an important paternal lineage of the ancient Donghu nomads. The Donghu-Xianbei branch is expected to have made an important paternal genetic contribution to Rouran. This component of gene flow ultimately entered the gene pool of modern Mongolic- and Manchu-speaking populations.

Collaboration


Dive into the Yongbin Zhao's collaboration.

Top Co-Authors

Avatar

Hui Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Cc

Jilin Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge