Yongbo Bao
Zhejiang Wanli University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongbo Bao.
PLOS ONE | 2014
Yongbo Bao; Lili Zhang; Yinghui Dong; Zhihua Lin
Background MicroRNAs (miRNAs) are endogenous non-coding small RNAs (sRNAs) that can base pair with their target mRNAs, which represses their translation or induces their degradation in various biological processes. To identify miRNAs regulated by heavy metal stress, we constructed two sRNA libraries for the blood clam Tegillarca granosa: one for organisms exposed to toxic levels of cadmium (Cd) and one for a control group. Results Sequencing of the two libraries and subsequent analysis revealed 215 conserved and 39 new miRNAs. Most of the new miRNAs in T. granosa were up- or down-regulated in response to Cd exposure. There were significant differences in expression between the Cd and control groups for 16 miRNAs. Of these, five miRNAs were significantly up-regulated and 11 were significantly down-regulated in the Cd stress library. Potential targets were predicted for the 16 differential miRNAs in pre-miRNAs identified according to sequence homology. Some of the predicted miRNA targets are associated with regulation of the response to stress induced by heavy metals. Five differentially expressed miRNAs (Tgr-nmiR-8, Tgr-nmiR-21, Tgr-miR-2a, Tgr-miR-10a-5p, and Tgr-miR-184b) were validated by qRT-PCR. Conclusion Our study is the first large-scale identification of miRNAs in T. granosa haemocytes. Our findings suggest that some miRNAs and their target genes and pathways may play critical roles in the responses of this species to environmental heavy metal stresses.
Fish & Shellfish Immunology | 2012
Qing Wang; Yongbo Bao; Lihui Huo; Hailong Gu; Zhihua Lin
Tissue inhibitor of metalloproteinases (TIMPs) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has been found to be broader as it includes the inhibition of several of the MMPs, etc. The cDNA encoding TIMP-4-like gene from blood clam Tegillarca granosa (designated as Tg-TIMP-4-like) which is the first tissue inhibitor of metalloproteinase identified in blood clams, was cloned and characterized. It was of 1164 bp, and an open reading frame (ORF) of 666 bp encoding a putative protein of 222 amino acids. The predicted amino acid sequence comprised all recognized functional domains found in other TIMP homologues and showed the highest (30.56%) identity to the TIMP-1.3 from Crassostrea gigas. Several highly conserved motifs including several TIMP signatures, amino acid residue Cys³⁰ responsible for coordinating the metal ions, the Cys-X-Cys motif and the putative NTR (netrin) domain were almost completely conserved in the deduced amino acid of Tg-TIMP-4 like, which indicated that Tg-TIMP-4-like should be a member of the TIMP family. The mRNA expression of Tg-TIMP-4-like in the tissues of mantle, adductor muscle, foot, gill, hemocyte and hepatopancreas was examined by quantitative real-time PCR (qT-PCR) and mRNA transcripts of Tg-TIMP-4-like were mainly detected in hemocyte, and weakly detected in the other tissues. We also observed that Tg-TIMP-4 like mRNA accumulated significantly during Vibrio parahaemolyticus, Peptidogylcan (PGN) and Lipopolysaccharide (LPS) challenge, whereas the timing and quantitative differences of mRNA expression against different challenge indicated that Tg-TIMP-4-like may play a pivotal role in mollusc defense mechanisms.
Scientific Reports | 2016
Yongbo Bao; Xiao Liu; Weiwei Zhang; Jianping Cao; Wei Li; Chenghua Li; Zhihua Lin
Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue. Proteomic analysis showed that oxidative stress, calcium-binding and sulfur-compound metabolism proteins were key factors responding to Cd challenge. A knowledge-based network regulation model was constructed with both metabolic and proteomic data. The model suggests that Cd stimulation mainly inhibits a core regulation network that is associated with histone function, ribosome processing and tight junctions, with the hub proteins actin, gamma 1 and Calmodulin 1. Moreover, myosin complex inhibition causes abnormal tight junctions and is linked to the irregular synthesis of amino acids. For the first time, this study provides insight into the proteomic and metabolomic changes caused by Cd in the blood clam T. granosa and suggests a potential toxicological pathway for Cd.
Fish & Shellfish Immunology | 2018
Mingjia Yu; Jianming Chen; Yongbo Bao; Jun Li
ABSTRACT NF‐&kgr;B signaling pathway is an evolutionarily conserved pathway that plays highly important roles in several developmental, cellular and immune response processes. With the recent release of the draft Pacific oyster (Crassostra gigas) genome sequence, we have sought to identify the various components of the NF‐&kgr;B signaling pathway in these mollusks and investigate their gene structure. We further constructed phylogenetic trees to establish the evolutionary relationship of the oyster proteins with their homologues in vertebrates and invertebrates using BLASTX and neighbor‐joining method. We report the presence of two classic NF‐&kgr;B/Rel homologues in the pacific oyster namely Cgp100 and CgRel, which possess characteristic RHD domain and a consensus nuclear localization signal, similar to mammalian homologues and an additional CgRel‐like protein, unique to C. gigas. Further, in addition to two classical I&kgr;B homologues, CgI&kgr;B1 and CgI&kgr;B2, we have identified three atypical I&kgr;B family members namely CgI&kgr;B3, CgI&kgr;B4 and CgBCL3 which lack the I&kgr;B degradation motif and consist of only one exon that might have arisen by retrotransposition from CgI&kgr;B1. Finally, we report the presence of three IKKs and one NEMO genes in oyster genome, named CgIKK1, CgIKK2, CgIKK3 and CgNEMO, respectively. While CgIKK1 and CgIKK3 domain structure is similar to their mammalian homologues, CgIKK2 was found to lack the HLH and NBD domains. Overall, the high conservation of the NF‐&kgr;B/Rel, I&kgr;B and IKK family components in the pacific oyster and their structural similarity to the vertebrate and invertebrate homologues underline the functional importance of this pathway in regulation of critical cellular processes across species. HighlightsA complex NF‐&kgr;B signaling component was identified in oysters.CgI&kgr;B gene expansion occurred by retrotransposition.CgIKK expansion occurred by adopting random duplication strategy.
Frontiers in Physiology | 2017
Guang Qian; Yongbo Bao; Chenghua Li; Qingqing Xie; Meng Lu; Zhihua Lin
The blood clam Tegillarca granosa, a eukaryotic bottom-dwelling bivalve species has a strong ability to tolerate and accumulate cadmium. In our previous study, Nfu1 (iron-sulfur cluster scaffold protein), which is involved in Fe-S cluster biogenesis, was shown to be significantly up-regulated under Cd stress, as determined by proteomic analysis. To investigate the function of Nfu1 in cadmium (Cd) detoxification, the function of blood clam Nfu1 (designated as Tg-Nfu1) was investigated by integrated molecular and protein approaches. The full-length cDNA of Tg-Nfu1 is 1167 bp and encodes a protein of 272 amino acid residues. The deduced Tg-Nfu1 protein is 30 kDa contains a conserved Nfu-N domain and a Fe-S cluster binding motif (C-X-X-C). qRT-PCR analysis revealed that Tg-Nfu1 was ubiquitously expressed in all examined tissues; it was up-regulated in the hepatopancreas and gill, and kept a high level from 9 to 24 h after Cd exposure (250 μg/L). Western blot analysis further revealed that the Tg-Nfu1 protein was also highly expressed in the hepatopancreas and gill after 24 h of Cd stress. Further functional analysis showed that the production of ROS was increased and Cu/ZnSOD activity was inhibited in blood clam, treated with the specific Nfu1 siRNA and Cd stress, respectively. These results suggest that Tg-Nfu1 could protect blood clam from oxidative damage caused by Cd stress.
Fish & Shellfish Immunology | 2017
Yina Shao; Huahui Chen; Miao Lv; Chenghua Li; Weiwei Zhang; Ye Li; Xuelin Zhao; Yongbo Bao
Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8) family is a newly identified protein with vital roles in maintaining immune homeostasis. In the current study, we first cloned and characterized a TNFAIP8 gene from the invertebrate sea cucumber Apostichopus japonicus. The gene was designated as AjTNFAIP8. The full-length cDNA of AjTNFAIP8 was 1455 bp long and encoded a matured protein of 201 amino acid residues. Structural analysis indicated that AjTNFAIP8 had a death effector domain (DED)-like domain and composed of six α-helices. Multiple sequence alignment and phylogenetic analysis supported that AjTNFAIP8 is a new member of the TNFAIP8 family. Analysis of basal transcription in five tissues revealed the constitutive expression of AjTNFAIP8 in the detected tissues with highest expression in the respiratory tree and minimum expression in the tentacle. Vibrio splendidus infection and LPS stimulation could significantly downregulate the mRNA expression of AjTNFAIP8. More importantly, the transcription of pro-inflammatory molecule NOS and its production of NO content were significantly increased after AjTNFAIP8 silencing, with the suppression of agmatinase transcript and arginase activity. These results clearly indicated that AjTNFAIP8 is an essential negative regulator in innate immunity. Basic information for further exploration of the functional mechanisms of TNFAIP8 family in other marine invertebrate is provided.
Clinical & Developmental Immunology | 2017
Sufang Wang; Xiaopei Yu; Zhihua Lin; Shunqin Zhang; Liangyi Xue; Qinggang Xue; Yongbo Bao
Hemoglobins are a group of respiratory proteins principally functioning in transport of oxygen and carbon dioxide in red blood cells of all vertebrates and some invertebrates. The blood clam T. granosa is one of the few invertebrates that have hemoglobin-containing red hemocytes. In the present research, the peroxidase activity of T. granosa hemoglobins (Tg-Hbs) was characterized and the associated mechanism of action was deciphered via structural comparison with other known peroxidases. We detected that purified Tg-Hbs catalyzed the oxidation of phenolic compounds in the presence of exogenous H2O2. Tg-Hbs peroxidase activity reached the maximum at pH 5 and 35°C and was inhibited by Fe2+, Cu2+, SDS, urea, and sodium azide. Tg-Hbs shared few similarities in amino acid sequence and overall structural characteristics with known peroxidases. However, the predicted structure at their heme pocket was highly similar to that of horseradish peroxidase (HRP) and myeloperoxidase (MPO). This research represented the first systemic characterization of hemoglobin as a peroxidase.
Frontiers in Physiology | 2018
Danli Song; Zhihua Lin; Yongjun Yuan; Guang Qian; Chenghua Li; Yongbo Bao
The blood clam, Tegillarca granosa, is a benthic filter feeder with a strong capacity to accumulate and tolerate cadmium (Cd). In our previous study, DPEP1 was shown to be significantly up-regulated under Cd stress based on proteomic analysis. To investigate whether DPEP1 is involved in Cd-induced response, the function of DPEP1 in T. granosa was investigated by integrated molecular and protein approaches. Rapid amplification cDNA end (RACE) assay was established to achieve the complete cDNA sequence of DPEP1 from T. granosa. The full-length cDNA of DPEP1 was 1811 bp, and it contained a 1359-bp open reading frame (ORF), including a 22-amino acid signal peptide. qRT-PCR analysis revealed that DPEP1 was expressed in all examined tissues with the highest expression in gills. At the same time, we investigated DPEP1 gene expression changes after Cd stress at different time points over 96 h. We found that the expression of DPEP1 increased upon initial Cd stress, then it was inhibited, and finally, it was maintained at a low level. Moreover, recombinant DPEP1 showed that higher glutathione (GSH) hydrolysis activity in the temperature range of 30–40°C, and its maximum activity was at pH = 6. Additionally, the results of immunohistochemistry also confirmed that DPEP1 protein was expressed in all test tissues with the highest expression in gills. In addition, there was a positive correlation between QRT-PCR and immunohistochemistry. These results suggested that DPEP1 is probably involved in Cd-induced response by balancing GSH.
Fish & Shellfish Immunology | 2011
Yongbo Bao; Qing Wang; Haoming Liu; Zhihua Lin
Fish & Shellfish Immunology | 2011
Yongbo Bao; Qing Wang; Zhihua Lin