Yongchao Xu
École Pour l'Informatique et les Techniques Avancées
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongchao Xu.
international conference on image processing | 2012
Yongchao Xu; Thierry Géraud; Laurent Najman
Image segmentation can be defined as the detection of closed contours surrounding objects of interest. Given a family of closed curves obtained by some means, a difficulty is to extract the relevant ones. A classical approach is to define an energy minimization framework, where interesting contours correspond to local minima of this energy. Active contours, graph cuts or minimum ratio cuts are instances of such approaches. In this article, we propose a novel efficient ratio-cut estimator which is both context-based and can be interpreted as an active contour. As a first example of the effectiveness of our formulation, we consider the tree of shapes, which provides a family of level lines organized in a tree hierarchy through an inclusion relationship. Thanks to the tree structure, the estimator can be computed incrementally in an efficient fashion. Experimental results on synthetic and real images demonstrate the robustness and usefulness of our method.
IEEE Transactions on Image Processing | 2014
Yongchao Xu; Pascal Monasse; Thierry Géraud; Laurent Najman
This paper introduces a topological approach to local invariant feature detection motivated by Morse theory. We use the critical points of the graph of the intensity image, revealing directly the topology information as initial interest points. Critical points are selected from what we call a tree-based shape-space. In particular, they are selected from both the connected components of the upper level sets of the image (the Max-tree) and those of the lower level sets (the Min-tree). They correspond to specific nodes on those two trees: 1) to the leaves (extrema) and 2) to the nodes having bifurcation (saddle points). We then associate to each critical point the largest region that contains it and is topologically equivalent in its tree. We call such largest regions the tree-based Morse regions (TBMRs). The TBMR can be seen as a variant of maximally stable extremal region (MSER), which are contrasted regions. Contrarily to MSER, TBMR relies only on topological information and thus fully inherit the invariance properties of the space of shapes (e.g., invariance to affine contrast changes and covariance to continuous transformations). In particular, TBMR extracts the regions independently of the contrast, which makes it truly contrast invariant. Furthermore, it is quasi-parameter free. TBMR extraction is fast, having the same complexity as MSER. Experimentally, TBMR achieves a repeatability on par with state-of-the-art methods, but obtains a significantly higher number of features. Both the accuracy and robustness of TBMR are demonstrated by applications to image registration and 3D reconstruction.
international symposium on memory management | 2013
Yongchao Xu; Thierry Géraud; Laurent Najman
Connected filtering is a popular strategy that relies on tree-based image representations: for example, one can compute an attribute on each node of the tree and keep only the nodes for which the attribute is sufficiently strong. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is done not in the space of the image, but on the space of shapes built from the image. Such a processing, that we called shape-based morphology [30], is a generalization of the existing tree-based connected operators. In this paper, two different applications are studied: in the first one, we apply our framework to blood vessels segmentation in retinal images. In the second one, we propose an extension of constrained connectivity. In both cases, quantitative evaluations demonstrate that shape-based filtering, a mere filtering step that we compare to more evolved processings, achieves state-of-the-art results.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016
Yongchao Xu; Thierry Géraud; Laurent Najman
Connected filters are well-known for their good contour preservation property. A popular implementation strategy relies on tree-based image representations: for example, one can compute an attribute characterizing the connected component represented by each node of the tree and keep only the nodes for which the attribute is sufficiently high. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is performed not in the space of the image, but in the space of shapes built from the image. Such a processing of shape-space filtering is a generalization of the existing tree-based connected operators. Indeed, the framework includes the classical existing connected operators by attributes. It also allows us to propose a class of novel connected operators from the leveling family, based on non-increasing attributes. Finally, we also propose a new class of connected operators that we call morphological shapings. Some illustrations and quantitative evaluations demonstrate the usefulness and robustness of the proposed shape-space filters.
international symposium on memory management | 2015
Yongchao Xu; Edwin Carlinet; Thierry Géraud; Laurent Najman
Tree-based image representations are popular tools for many applications in mathematical morphology and image processing. Classically, one computes an attribute on each node of a tree and decides whether to preserve or remove some nodes upon the attribute function. This attribute function plays a key role for the good performance of tree-based applications. In this paper, we propose several algorithms to compute efficiently some attribute information. The first one is incremental computation of information on region, contour, and context. Then we show how to compute efficiently extremal information along the contour (e.g., minimal gradient’s magnitude along the contour). Lastly, we depict computation of extinction-based saliency map using tree-based image representations. The computation complexity and the memory cost of these algorithms are analyzed. To the best of our knowledge, except information on region, none of the other algorithms is presented explicitly in any state-of-the-art paper.
international conference on image processing | 2013
Yongchao Xu; Thierry Géraud; Laurent Najman
Many methods relying on the morphological notion of shapes, (i.e., connected components of level sets) have been proved to be very useful for pattern analysis and recognition. Selecting meaningful level lines (boundaries of level sets) yields to simplify images while preserving salient structures. Many image simplification and/or segmentation methods are driven by the optimization of an energy functional, for instance the Mumford-Shah functional. In this article, we propose an efficient shape-based morphological filtering that very quickly compute to a locally (subordinated to the tree of shapes) optimal solution of the piecewise-constant Mumford-Shah functional. Experimental results demonstrate the efficiency, usefulness, and robustness of our method, when applied to image simplification, pre-segmentation, and detection of affine regions with viewpoint changes.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2017
Yongchao Xu; Edwin Carlinet; Thierry Géraud; Laurent Najman
Current trends in image segmentation are to compute a hierarchy of image segmentations from fine to coarse. A classical approach to obtain a single meaningful image partition from a given hierarchy is to cut it in an optimal way, following the seminal approach of the scale-set theory. While interesting in many cases, the resulting segmentation, being a non-horizontal cut, is limited by the structure of the hierarchy. In this paper, we propose a novel approach that acts by transforming an input hierarchy into a new saliency map. It relies on the notion of shape space: a graph representation of a set of regions extracted from the image. Each region is characterized with an attribute describing it. We weigh the boundaries of a subset of meaningful regions (local minima) in the shape space by extinction values based on the attribute. This extinction-based saliency map represents a new hierarchy of segmentations highlighting regions having some specific characteristics. Each threshold of this map represents a segmentation which is generally different from any cut of the original hierarchy. This new approach thus enlarges the set of possible partition results that can be extracted from a given hierarchy. Qualitative and quantitative illustrations demonstrate the usefulness of the proposed method.
Pattern Recognition Letters | 2016
Yongchao Xu; Thierry Géraud; Laurent Najman
An efficient hierarchical image simplification and segmentation method.Stack hierarchically level lines from meaningless to salient ones.Highlight salient level lines.Strongly simplify image while preserving salient structures intact.Quasi-linear time complexity w.r.t. the number of pixels. Hierarchies, such as the tree of shapes, are popular representations for image simplification and segmentation thanks to their multiscale structures. Selecting meaningful level lines (boundaries of shapes) yields to simplify image while preserving intact salient structures. Many image simplification and segmentation methods are driven by the optimization of an energy functional, for instance the celebrated Mumford-Shah functional. In this paper, we propose an efficient approach to hierarchical image simplification and segmentation based on the minimization of the piecewise-constant Mumford-Shah functional. This method conforms to the current trend that consists in producing hierarchical results rather than a unique partition. Contrary to classical approaches which compute optimal hierarchical segmentations from an input hierarchy of segmentations, we rely on the tree of shapes, a unique and well-defined representation equivalent to the image. Simply put, we compute for each level line of the image an attribute function that characterizes its persistence under the energy minimization. Then we stack the level lines from meaningless ones to salient ones through a saliency map based on extinction values defined on the tree-based shape space. Qualitative illustrations and quantitative evaluation on Weizmann segmentation evaluation database demonstrate the state-of-the-art performance of our method.
international conference on image processing | 2017
Yongchao Xu; Thierry Géraud; Isabelle Bloch
Brain magnetic resonance imaging (MRI) is widely used to assess brain development in neonates and to diagnose a wide range of neurological diseases in adults. Such studies are usually based on quantitative analysis of different brain tissues, so it is essential to be able to classify them accurately. In this paper, we propose a fast automatic method that segments 3D brain MR images into different tissues using fully convolutional network (FCN) and transfer learning. As compared to existing deep learning-based approaches that rely either on 2D patches or on fully 3D FCN, our method is way much faster: it only takes a few seconds, and only a single modality (T1 or T2) is required. In order to take the 3D information into account, all 3 successive 2D slices are stacked to form a set of 2D “color” images, which serve as input for the FCN pre-trained on ImageNet for natural image classification. To the best of our knowledge, this is the first method that applies transfer learning to segment both neonatal and adult brain 3D MR images. Our experiments on two public datasets show that our method achieves state-of-the-art results.
international conference on pattern recognition | 2016
Le Duy Huynh; Yongchao Xu; Thierry Géraud
Many text segmentation methods are elaborate and thus are not suitable to real-time implementation on mobile devices. Having an efficient and effective method, robust to noise, blur, or uneven illumination, is interesting due to the increasing number of mobile applications needing text extraction. We propose a hierarchical image representation, based on the morphological Laplace operator, which is used to give a robust text segmentation. This representation relies on several very sound theoretical tools; its computation eventually translates to a simple labeling algorithm, and for text segmentation and grouping, to an easy tree-based processing. We also show that this method can also be applied to document binarization, with the interesting feature of getting also reverse-video text.