Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongchun Zhou is active.

Publication


Featured researches published by Yongchun Zhou.


Scientific Reports | 2015

Down-regulation of microRNA-144 in air pollution-related lung cancer

Hong-Li Pan; Zhe-Sheng Wen; Yunchao Huang; Xin Cheng; Gui-Zhen Wang; Yongchun Zhou; Zai-Yong Wang; Yong-Qing Guo; Yi Cao; Guang-Biao Zhou

Air pollution has been classified as a group 1 carcinogen in humans, but the underlying tumourigenic mechanisms remain unclear. In Xuanwei city of Yunnan Province, the lung cancer incidence is among the highest in China, owing to severe air pollution generated by the combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis. To identify abnormal miRNAs critical for air pollution-related tumourigenesis, we performed microRNA microarray analysis in 6 Xuanwei non-small cell lung cancers (NSCLCs) and 4 NSCLCs from control regions where smoky coal was not used. We found 13 down-regulated and 2 up-regulated miRNAs in Xuanwei NSCLCs. Among them, miR-144 was one of the most significantly down-regulated miRNAs. The expanded experiments showed that miR-144 was down-regulated in 45/51 (88.2%) Xuanwei NSCLCs and 34/54 (63%) control region NSCLCs (p = 0.016). MiR-144 interacted with the oncogene Zeb1 at 2 sites in its 3′ untranslated region, and a decrease in miR-144 resulted in increased Zeb1 expression and an epithelial mesenchymal transition phenotype. Ectopic expression of miR-144 suppressed NSCLCs in vitro and in vivo by targeting Zeb1. These results indicate that down-regulation of miR-144 is critical for air pollution-related lung cancer, and the miR-144-Zeb1 signalling pathway could represent a potential therapeutic target.


Oncotarget | 2016

Long non-coding RNA stabilizes the Y-box-binding protein 1 and regulates the epidermal growth factor receptor to promote lung carcinogenesis

Ming-Ming Wei; Yongchun Zhou; Zhe-Sheng Wen; Bo Zhou; Yunchao Huang; Gui-Zhen Wang; Xinchun Zhao; Hong-Li Pan; Li-Wei Qu; Jian Zhang; Chen Zhang; Xin Cheng; Guang-Biao Zhou

Indoor and outdoor air pollution has been classified as group I carcinogen in humans, but the underlying tumorigenesis remains unclear. Here, we screened for abnormal long noncoding RNAs (lncRNAs) in lung cancers from patients living in Xuanwei city which has the highest lung cancer incidence in China due to smoky coal combustion-generated air pollution. We reported that Xuanwei patients had much more dysregulated lncRNAs than patients from control regions where smoky coal was not used. The lncRNA CAR intergenic 10 (CAR10) was up-regulated in 39/62 (62.9%) of the Xuanwei patients, which was much higher than in patients from control regions (32/86, 37.2%; p=0.002). A multivariate regression analysis showed an association between CAR10 overexpression and air pollution, and a smoky coal combustion-generated carcinogen dibenz[a,h]anthracene up-regulated CAR10 by increasing transcription factor FoxF2 expression. CAR10 bound and stabilized transcription factor Y-box-binding protein 1 (YB-1), leading to up-regulation of the epidermal growth factor receptor (EGFR) and proliferation of lung cancer cells. Knockdown of CAR10 inhibited cell growth in vitro and tumor growth in vivo. These results demonstrate the role of lncRNAs in environmental lung carcinogenesis, and CAR10-YB-1 represents a potential therapeutic target.


Journal of Cellular Biochemistry | 2015

Down‐regulated SOX4 Expression Suppresses Cell Proliferation, Metastasis and Induces Apoptosis in Xuanwei Female Lung Cancer Patients

Yongchun Zhou; Wang X; Yunchao Huang; Yan Chen; Guangqiang Zhao; Qian Yao; Congguo Jin; You-Guang Huang; Xin Liu; Li G

The transcription factor SOX4 has functional importance in foetal lung maturation and tumorigenesis in a number of cancers. However, its biological functions in the progression of lung tumorigenesis remain unclear. In this study, we found that the expression levels of SOX4 mRNA and protein were significantly higher in Xuanwei female lung cancer tissues than in benign lung lesions. The patients with high expression of the SOX4 protein had a higher pathological grade, lymph node (LN) metastasis, poor tumor differentiation and worse prognosis than those patients with low expression of SOX4. Knockdown of the SOX4 gene in the Xuanwei female lung cancer cell line XWLC‐05 resulted in apoptotic morphological changes, decreased cell proliferation, invasion and migration. Furthermore, knockdown of the SOX4 gene resulted in obvious sub‐G1 peaks and induction of apoptosis through upregulation of caspase‐3 expression, while in cells treated with a caspase‐3 inhibitor, apoptosis induced by silencing SOX4 expression was inhibited. In vivo analysis in nude mice further confirmed that knockdown of SOX4 suppressed tumor growth. In conclusion, SOX4 appears to be an important tumor suppressor gene in the regulation of Xuanwei female lung cancer cell proliferation, apoptosis and metastases, and it may be a potential target for effective lung cancer therapy. J. Cell. Biochem. 116: 1007–1018, 2015.


eLife | 2015

The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution

Gui-Zhen Wang; Xin Cheng; Bo Zhou; Zhe-Sheng Wen; Yunchao Huang; Hao-Bin Chen; Gao-Feng Li; Zhi-Liang Huang; Yongchun Zhou; Lin Feng; Ming-Ming Wei; Li-Wei Qu; Yi Cao; Guang-Biao Zhou

More than 90% of lung cancers are caused by cigarette smoke and air pollution, with polycyclic aromatic hydrocarbons (PAHs) as key carcinogens. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China, attributed to smoky coal combustion-generated PAH pollution. Here, we screened for abnormal inflammatory factors in non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used, and found that a chemokine CXCL13 was overexpressed in 63/70 (90%) of Xuanwei NSCLCs and 44/71 (62%) of smoker and 27/60 (45%) of non-smoker CR patients. CXCL13 overexpression was associated with the region Xuanwei and cigarette smoke. The key carcinogen benzo(a)pyrene (BaP) induced CXCL13 production in lung epithelial cells and in mice prior to development of detectable lung cancer. Deficiency in Cxcl13 or its receptor, Cxcr5, significantly attenuated BaP-induced lung cancer in mice, demonstrating CXCL13’s critical role in PAH-induced lung carcinogenesis. DOI: http://dx.doi.org/10.7554/eLife.09419.001


Anti-Cancer Drugs | 2016

Acquired resistance to HSP90 inhibitor 17-AAG and increased metastatic potential are associated with MUC1 expression in colon carcinoma cells.

Xin Liu; Li-Li Ban; Gang Luo; Zhi-Yao Li; Yun-Feng Li; Yongchun Zhou; Wang X; Congguo Jin; Jia-Gui Ye; Ding-Ding Ma; Qing Xie; You-Guang Huang

Heat shock protein 90 (HSP90) is a molecular chaperone required for the stability and function of many proteins. The chaperoning of oncoproteins by HSP90 enhances the survival, growth, and invasive potential of cancer cells. HSP90 inhibitors are promising new anticancer agents, in which the benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin (17-AAG) is currently in clinical evaluation. However, the implications of acquired resistance to this class of drug remain largely unexplored. In the present study, we have generated isogenic human colon cancer cell lines that are resistant to 17-AAG by continued culturing in the compound. Cross-resistance was found with another HSP90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin. The resistant cells showed obvious morphology changes with a metastatic phenotype and significant increases in migration and adhesion to collagens. Western blotting analysis of epithelial–mesenchymal transition molecular markers found that expression of E-cadherin downregulated, whereas expression of N-cadherin and &bgr;-catenin upregulated in the resistant cells. Mucin 1 (MUC1) has been reported to mediate metastasis as well as chemical resistance in many cancers. Here, we found that MUC1 expression was significantly elevated in the acquired drug resistance cells. 17-AAG treatment could decrease MUC1 more in parental cells than in acquired 17-AAG-resistant cells. Further study found that knockdown of MUC1 expression by small interfering RNA could obviously re-sensitize the resistant cells to 17-AAG treatment, and decrease the cell migration and adhesion. These were coupled with a downregulation in N-cadherin and &bgr;-catenin. The results indicate that HSP90 inhibitor therapies in colon carcinomas could generate resistance and increase metastatic potential that might mediated by upregulation of MUC1 expression. Findings from this study further our understanding of the potential clinical effects of HSP90-directed therapies in colon carcinomas.


Oncotarget | 2017

The clinical use of circulating microRNAs as non-invasive diagnostic biomarkers for lung cancers

Yanlong Yang; Zaoxiu Hu; Yongchun Zhou; Guangqiang Zhao; Yujie Lei; Guangjian Li; Shuai Chen; Kai Chen; Zhenghai Shen; Xiao Chen; Peilin Dai; Yunchao Huang

Many studies have investigated the diagnostic role of circulating microRNAs (miRNAs) in patients with lung cancer; however, the results still remain inconclusive. An updated system review and meta-analysis was necessary to give a comprehensive evaluation of diagnostic role of circulating miRNAs in lung cancer. Eligible studies were searched in electronical databases. The sensitivity and specificity were used to plot the summary receiver operator characteristic (SROC) curve and calculate the area under the curve (AUC). The between-study heterogeneity was evaluated by Q test and I2 statistics. Subgroup analyses and meta-regression were further performed to explore the potential sources of heterogeneity. A total of 134 studies from 65 articles (6,919 patients with lung cancer and 7,064 controls) were included for analysis. Overall analysis showed that circulating miRNAs had a good diagnostic performance in lung cancers, with a sensitivity of 0.83, a specificity of 0.84, and an AUC of 0.90. Subgroup analysis suggested that combined miRNAs and Caucasian populations may yield relatively higher diagnostic performance. In addition, we found serum might serve as an ideal material to detecting miRNA as good diagnostic performance. We also found the diagnostic role of miRNAs in early stage lung cancer was still relatively high (the sensitivity, specificity and an AUC of stage I/II was 0.81, 0.82 and 0.88; and for stage I, it was 0.80, 0.81, and 0.88). We also identified a panel of miRNAs such as miR-21-5p, miR-223-3p, miR-155-5p and miR-126-3p might serve as potential biomarkers for lung cancer. As a result, circulating miRNAs, particularly the combination of multiple miRNAs, may serve as promising biomarkers for the diagnosis of lung cancer.


OncoTargets and Therapy | 2018

Application of serum microRNA-9-5p, 21-5p, and 223-3p combined with tumor markers in the diagnosis of non-small-cell lung cancer in Yunnan in southwestern China

Yanlong Yang; Kai Chen; Yongchun Zhou; Zaoxiu Hu; Shuai Chen; Yunchao Huang

Purpose Xuanwei City is located in late Permian coal-accumulating areas of the northeastern region of Yunnan Province. In China, morbidity and mortality from lung cancer are highest in Yunnan. Identifying useful circulating markers suitable for the diagnosis of lung cancer in this region is quite meaningful. In this study, we evaluated diagnostic roles of serum miR-9-5p, 21-5p, 223-3p, 135b-5p, 339-5p, and 501-5p in patients with non-small-cell lung cancer (NSCLC) in Yunnan. Moreover, we evaluated the diagnostic performance of several tumor markers, including carcinoembryonic antigen (CEA), cytokeratin 19 fragment 21-1 (CYFRA21-1), and squamous cell carcinoma-related antigen (SCC). Methods Quantitative real-time polymerase chain reaction detected six miRNAs in the serum of 104 NSCLC patients and 50 cancer-free controls. Other markers, including CEA, CYFRA21-1, and SCC, in serum were also measured. The diagnostic ability of miRNAs and tumor markers was evaluated by receiver operating characteristic (ROC) curve analysis. The diagnostic performance of these serum markers was also evaluated in Xuanwei and non-Xuanwei subjects, because the etiological and the epidemiological characteristics of lung cancer in Xuanwei were quite different from those in other regions. Results Serum miR-9-5p, miR-21-5p, miR-223-3p, CEA, CYFRA21-1, and SCC were upregulated in NSCLC patients, compared with cancer-free controls. No significant difference was found in miR-135b-5p, miR-339-5p, and miR-501-5p expression. The area under ROC curves (AUCs) of miR-9-5p, miR-21-5p, miR-223-3p, CEA, CYFRA21-1, and SCC were 0.706, 0.765, 0.744, 0.749, 0.735, and 0.616, respectively. When combined, miRNAs and tumor markers yielded the highest diagnostic power, with AUC of 0.886, sensitivity of 82.69%, and specificity of 88.00%. In Xuanwei subjects, miR-223-3p and CEA may be suitable biomarkers to distinguish NSCLC from cancer-free states with AUCs of 0.752 and 0.791, respectively. The diagnostic power of the combination of miRNAs and tumor markers was still the highest in both subgroups (region: Xuanwei and non-Xuanwei; stages: I–II and III–IV). Conclusion Serum miR-9-5p, miR-21-5p, miR-223-3p, CEA, CYFRA21-1, and SCC could be potential diagnostic biomarkers for NSCLC patients in Yunnan. miRNAs and tumor markers should be combined to diagnose NSCLC, as it showed better ability for screening patients with NSCLC.


Oncotarget | 2017

Epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) of Yunnan in southwestern China

Yongchun Zhou; Yanlong Yang; Chenggang Yang; Yunlan Chen; Changshao Yang; Yaxi Du; Guangqiang Zhao; Yinjin Guo; Lianhua Ye; Yunchao Huang

To investigate the Epidermal Growth Factor Receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) in Yunnan province in southwestern China, we detected EGFR mutation by Amplification Refractory Mutation System (ARMS) polymerase chain reaction (PCR) using DNA samples from 447 pathologically confirmed NSCLC specimens (175 tissue, 256 plasma and 16 cytologic samples). The relationship between EGFR mutations and demographic and clinical factors were further explored. Subgroup analyses according to sample type (tissue and plasma) and histological type (adenocarcinoma) were done. We found the mutation rate was 34.9% in overall patients (42.3%, 29.7%, and 37.5% for tissue, plasma, and cytologic samples respectively). We found female (p < 0.0001), no smoking (p = 0.001), adenocarcinoma (p < 0.0001), and tissue specimen (p = 0.026) were associated with higher EGFR mutation rate. The most common mutations were exon 19 deletions (40%) and L858R point (30%) mutation. Interestingly, NSCLC patients from Xuanwei harbored a strikingly divergent mutational pattern for EGFR when compared with non-Xuanwei patients (higher G719X, G719X+S768I mutations, but lower 19 deletion and L858R mutations). Generally, EGFR mutation rate and pattern in Yunnan province was in accord with other Asian populations. However, Xuanwei subgroup showed strikingly divergent EGFR mutation spectrum from other general population. Our analysis also indicated that cftDNA analysis for EGFR mutations detection was feasibility for the patients lacking sufficient tissue for molecular analyses.


Oncology Letters | 2016

Tree shrew as a new animal model for the study of lung cancer

Lianhua Ye; Meng He; Yunchao Huang; Guangqiang Zhao; Yujie Lei; Yongchun Zhou; Xiaobo Chen

Animal models play a key role in identifying treatments for various types of cancer, including lung cancer. The aim of the present study was to develop a new animal model for lung cancer induction using tree shrews from the Yunnan region in China. Tree shrews are suitable for a full simulation of human disease because their structure, function and metabolism are adequately close to human. This animal may offer a new experimental animal model to be used in the study of lung cancer. In the present study, 80 healthy tree shrews were distributed in experimental and control groups. Animals in the experimental group received different concentrations of iodized oil suspension of 3-methylcholanthrene (3-MC) and diethylnitrosamine (DEN) while animals in the control groups received saline or lipiodol solvent via endotracheal instillation. In the 3rd, 5th, 7th, 9th and 11th weeks the body weights of the animals were measured and chest X-ray examinations were conducted. Pathological studies on the lung tissues were also performed and the pathological changes occurring in bronchial epithelium in all the groups were examined. Animals in the experimental group gradually lost their body weight. For tree shrews in the blank control and solvent control groups the survival rates were 100 and 80%, respectively while the survival rate for the experimental group was 0%. Results from the chest X-ray conducted on animals in the blank control and solvent control groups revealed no obvious abnormalities while in the experimental group high-density shadow spots within the perfusion sites were observed. Pathological studies performed on these high-density areas confirmed changes in the bronchial epithelium. In the experimental groups we also detected bronchial epithelial atypical hyperplasia, and apparent changes in carcinoma in situ. In conclusion, lung cancer was successfully induced in tree shrews by a one-time endotracheal introduction of iodized oil suspension of 3-MC and DEN.


Chinese Journal of Lung Cancer | 2013

Subcellular distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells

Guangqiang Zhao; Yunchao Huang; Guangjian Li; Sen Li; Yongchun Zhou; Yujie Lei; Xiaobo Chen; Kaiyun Yang; Ying Chen; Kun Yang

BACKGROUND Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B). METHODS The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM). DNA damage was detected by single-cell gel electrophoresis (comet assay). RESULTS TEM revealed that SiO₂ nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05). CONCLUSIONS The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

Collaboration


Dive into the Yongchun Zhou's collaboration.

Top Co-Authors

Avatar

Yunchao Huang

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Guangqiang Zhao

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Yujie Lei

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Guang-Biao Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangjian Li

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Gui-Zhen Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wang X

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Chen

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan Chen

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Ying Chen

Kunming Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge