Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongguang Tao is active.

Publication


Featured researches published by Yongguang Tao.


PLOS ONE | 2010

Cigarette Smoke Induces C/EBP-β-Mediated Activation of miR-31 in Normal Human Respiratory Epithelia and Lung Cancer Cells

Sichuan Xi; Maocheng Yang; Yongguang Tao; Hong Xu; Jigui Shan; Suzanne Inchauste; Mary Zhang; Leandro Mercedes; Julie A. Hong; Mahadev Rao; David S. Schrump

Background Limited information is available regarding mechanisms by which miRNAs contribute to pulmonary carcinogenesis. The present study was undertaken to examine expression and function of miRNAs induced by cigarette smoke condensate (CSC) in normal human respiratory epithelia and lung cancer cells. Methodology Micro-array and quantitative RT-PCR (qRT-PCR) techniques were used to assess miRNA and host gene expression in cultured cells, and surgical specimens. Software-guided analysis, RNA cross-link immunoprecipitation (CLIP), 3′ UTR luciferase reporter assays, qRT-PCR, focused super-arrays and western blot techniques were used to identify and confirm targets of miR-31. Chromatin immunoprecipitation (ChIP) techniques were used to evaluate histone marks and transcription factors within the LOC554202 promoter. Cell count and xenograft experiments were used to assess effects of miR-31 on proliferation and tumorigenicity of lung cancer cells. Results CSC significantly increased miR-31 expression and activated LOC554202 in normal respiratory epithelia and lung cancer cells; miR-31 and LOC554202 expression persisted following discontinuation of CSC exposure. miR-31 and LOC554202 expression levels were significantly elevated in lung cancer specimens relative to adjacent normal lung tissues. CLIP and reporter assays demonstrated direct interaction of miR-31 with Dickkopf-1 (Dkk-1) and DACT-3. Over-expression of miR-31 markedly diminished Dkk-1 and DACT3 expression levels in normal respiratory epithelia and lung cancer cells. Knock-down of miR-31 increased Dkk-1 and DACT3 levels, and abrogated CSC-mediated decreases in Dkk-1 and DACT-3 expression. Furthermore, over-expression of miR-31 diminished SFRP1, SFRP4, and WIF-1, and increased Wnt-5a expression. CSC increased H3K4Me3, H3K9/14Ac and C/EBP-β levels within the LOC554202 promoter. Knock-down of C/EBP-β abrogated CSC-mediated activation of LOC554202. Over-expression of miR-31 significantly enhanced proliferation and tumorigenicity of lung cancer cells; knock-down of miR-31 inhibited growth of these cells. Conclusions Cigarette smoke induces expression of miR-31 targeting several antagonists of cancer stem cell signaling in normal respiratory epithelia and lung cancer cells. miR-31 functions as an oncomir during human pulmonary carcinogenesis.


Journal of Clinical Investigation | 2013

Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis.

Sichuan Xi; Hong Xu; Jigui Shan; Yongguang Tao; Julie A. Hong; Suzanne Inchauste; Mary Zhang; Tricia F. Kunst; Leandro Mercedes; David S. Schrump

MicroRNAs are critical mediators of stem cell pluripotency, differentiation, and malignancy. Limited information exists regarding microRNA alterations that facilitate initiation and progression of human lung cancers. In this study, array techniques were used to evaluate microRNA expression in normal human respiratory epithelia and lung cancer cells cultured in the presence or absence of cigarette smoke condensate (CSC). Under relevant exposure conditions, CSC significantly repressed miR-487b. Subsequent experiments demonstrated that miR-487b directly targeted SUZ12, BMI1, WNT5A, MYC, and KRAS. Repression of miR-487b correlated with overexpression of these targets in primary lung cancers and coincided with DNA methylation, de novo nucleosome occupancy, and decreased H2AZ and TCF1 levels within the miR-487b genomic locus. Deoxy-azacytidine derepressed miR-487b and attenuated CSC-mediated silencing of miR-487b. Constitutive expression of miR-487b abrogated Wnt signaling, inhibited in vitro proliferation and invasion of lung cancer cells mediated by CSC or overexpression of miR-487b targets, and decreased growth and metastatic potential of lung cancer cells in vivo. Collectively, these findings indicate that miR-487b is a tumor suppressor microRNA silenced by epigenetic mechanisms during tobacco-induced pulmonary carcinogenesis and suggest that DNA demethylating agents may be useful for activating miR-487b for lung cancer therapy.


Journal of Experimental & Clinical Cancer Research | 2013

Regulation of microRNAs by epigenetics and their interplay involved in cancer

Xiaolan Liu; Xiaoyan Chen; Xinfang Yu; Yongguang Tao; Ann M. Bode; Zigang Dong; Ya Cao

Similar to protein-coding genes, miRNAs are also susceptible to epigenetic modulation. Although numerous miRNAs have been shown to be affected by DNA methylation, the regulatory mechanism of histone modification on miRNA is not adequately understood. EZH2 and HDACs were recently identified as critical histone modifiers of deregulated miRNAs in cancer and can be recruited to a miRNA promoter by transcription factors such as MYC. Because miRNAs can modulate epigenetic architecture and can be regulated by epigenetic alteration, they could reasonably play an important role in mediating the crosstalk between epigenetic regulators. The complicated network between miRNAs and epigenetic machineries underlies the epigenetic–miRNA regulatory pathway, which is important in monitoring gene expression profiles. Regulation of miRNAs by inducing epigenetic changes reveals promising avenues for the design of innovative strategies in the fight against human cancer.


Oncogene | 2014

Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy.

Lanbo Xiao; Z-Y Hu; Xin Dong; Z. Tan; Wei Li; Min Tang; Ling Chen; Lifang Yang; Yongguang Tao; Yiqun Jiang; J. Li; B. Yi; B. Li; S. Fan; Shuo You; Xingming Deng; F. Hu; L. Feng; Ann M. Bode; Zigang Dong; L-Q Sun; Ya Cao

Our goal in this work was to illustrate the Epstein-Barr virus (EBV)-modulated global biochemical profile and provide a novel metabolism-related target to improve the therapeutic regimen of nasopharyngeal carcinoma (NPC). We used a metabolomics approach to investigate EBV-modulated metabolic changes, and found that the exogenous overexpression of the EBV-encoded latent membrane protein 1 (LMP1) significantly increased glycolysis. The deregulation of several glycolytic genes, including hexokinase 2 (HK2), was determined to be responsible for the reprogramming of LMP1-mediated glucose metabolism in NPC cells. The upregulation of HK2 elevated aerobic glycolysis and facilitated proliferation by blocking apoptosis. More importantly, HK2 was positively correlated with LMP1 in NPC biopsies, and high HK2 levels were significantly associated with poor overall survival of NPC patients following radiation therapy. Knockdown of HK2 effectively enhanced the sensitivity of LMP1-overexpressing NPC cells to irradiation. Finally, c-Myc was demonstrated to be required for LMP1-induced upregulation of HK2. The LMP1-mediated attenuation of the PI3-K/Akt-GSK3beta-FBW7 signaling axis resulted in the stabilization of c-Myc. These findings indicate a close relationship between EBV and glycolysis in NPC. Notably, LMP1 is the key regulator of the reprogramming of EBV-mediated glycolysis in NPC cells. Given the importance of EBV-mediated deregulation of glycolysis, anti-glycolytic therapy might represent a worthwhile avenue of exploration in the treatment of EBV-related cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences.

Yongguang Tao; Sichuan Xi; Jigui Shan; Alika Maunakea; Anney Che; Victorino Briones; Eunice Y. Lee; Theresa M. Geiman; Jiaqiang Huang; Robert M. Stephens; Robert M. Leighty; Keji Zhao; Kathrin Muegge

DNA methylation is critical for normal development and plays important roles in genome organization and transcriptional regulation. Although DNA methyltransferases have been identified, the factors that establish and contribute to genome-wide methylation patterns remain elusive. Here, we report a high-resolution cytosine methylation map of the murine genome modulated by Lsh, a chromatin remodeling family member that has previously been shown to regulate CpG methylation at repetitive sequences. We provide evidence that Lsh also controls genome-wide cytosine methylation at nonrepeat sequences and relate those changes to alterations in H4K4me3 modification and gene expression. Deletion of Lsh alters the allocation of cytosine methylation in chromosomal regions of 50 kb to 2 Mb and, in addition, leads to changes in the methylation profile at the 5′ end of genes. Furthermore, we demonstrate that loss of Lsh promotes—as well as prevents—cytosine methylation. Our data indicate that Lsh is an epigenetic modulator that is critical for normal distribution of cytosine methylation throughout the murine genome.


Journal of Experimental & Clinical Cancer Research | 2013

Epstein-Barr Virus encoded LMP1 regulates cyclin D1 promoter activity by nuclear EGFR and STAT3 in CNE1 cells

Yang Xu; Ying Shi; Qi Yuan; Xuli Liu; Bin Yan; Ling Chen; Yongguang Tao; Ya Cao

The principal Epstein–Barr virus (EBV) oncoprotein, latent membrane protein 1 (LMP1) is strongly associated with nasopharyngeal carcinoma (NPC), a prevalent cancer in China. The epidermal growth factor receptor (EGFR) is important in carcinogenesis, as it is a ubiquitously expressed receptor tyrosine kinase. Signal transducer and activator of transcription 3 (STAT3) is a master transcriptional regulator in proliferation and apoptosis. Our previous study demonstrated that the nuclear EGFR could bind to the cyclin D1 promoter directly in the presence of LMP1, and the correlation between EGFR and STAT3 in NPC remains to be further explored. Here, we have shown that the interaction of EGFR and STAT3 increased in the nucleus in the presence of LMP1. LMP1 promoted both EGFR and STAT3 binding to the promoter region of cyclin D1, in turn, enhancing the promoter activity of cyclin D1. Furthermore, we demonstrated that both transcriptional activity and mRNA levels of cyclin D1 were decreased by small molecule interference of EGFR and STAT3 activity. These findings may provide a novel linkage between the EGFR and STAT3 signaling pathways and the activation of cyclin D1 by LMP1 in the carcinogenesis of NPC.


Carcinogenesis | 2012

Nuclear epidermal growth factor receptor interacts with transcriptional intermediary factor 2 to activate cyclin D1 gene expression triggered by the oncoprotein latent membrane protein 1

Yin Shi; Yongguang Tao; Yiqun Jiang; Yang Xu; Bin Yan; Xue Chen; Lanbo Xiao; Ya Cao

The epidermal growth factor receptor (EGFR), a ubiquitously expressed receptor tyrosine kinase, is an important factor in carcinogenesis. Transcriptional intermediary factor 2 (TIF2), a member of the p160 nuclear receptor co-activator gene family, is linked to the proliferation of cancer cells. However, the direct interplay between the EGFR and the nuclear receptors remains unclear. Our previous study demonstrated that nuclear EGFR could directly bind to the cyclin D1 promoter under the regulation of the oncoprotein latent membrane protein 1 (LMP1), but it also indicated that other factors are involved in the activation of target genes. In this study, we found that LMP1 upregulated the expression of TIF2 and promoted the interaction of EGFR with TIF2 in nasopharyngeal carcinoma. Furthermore, we demonstrated that the intact complex was linked with cyclin D1 promoter activity in an LMP1-dependent manner. The physiological functions of the intact complex were associated with cell proliferation and cell cycle progression. These findings suggest that TIF2 is a novel binding partner for nuclear EGFR and is involved in regulating its target gene expression.


Carcinogenesis | 2013

(-)-Epigallocatechin-3-gallate inhibition of Epstein–Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells

Sufang Liu; Hongde Li; Lin Chen; Lifang Yang; Lili Li; Yongguang Tao; Wei Li; Zijian Li; Haidan Liu; Min Tang; Ann M. Bode; Zigang Dong; Ya Cao

Epstein-Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, including nasopharyngeal carcinoma and lymphoma. In this study, we investigated the effects of the tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on EBV spontaneous lytic infection and the mechanism(s) involved in EBV-positive cells. We found that EGCG could effectively inhibit the constitutive lytic infection of EBV at the DNA, gene transcription and protein levels by decreasing the phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. By using cellular signaling pathway-specific inhibitors, we also explored the signaling mechanisms underlying the inhibitory effects of EGCG on EBV spontaneous lytic infection in cell models. Results show that specific inhibitors of Mitogen-Activated Protein Kinase Kinase (MEK) (PD98059) and phosphatidylinositol 3-kinase [PI3-K (LY294002)] markedly downregulated gene transcription and expression of BZLF1 and BMRF1 indicating that the MEK/ERK1/2 and PI3-K/Akt pathways are involved in the EBV spontaneous lytic cycle cascade. Therefore, one of the mechanisms by which EGCG inhibits EBV spontaneous lytic infection appears to involve the suppression of the activation of MEK/ERK1/2 and PI3-K/Akt signaling.


International Journal of Cancer | 2009

EBV-encoded LMP1 regulates Op18/stathmin signaling pathway by cdc2 mediation in nasopharyngeal carcinoma cells.

Xuechi Lin; Sufang Liu; Xiangjian Luo; Xiaoqian Ma; Lili Guo; Lili Li; Zijian Li; Yongguang Tao; Ya Cao

Oncoprotein 18/stathmin (Op18/stathmin) plays a crucial role in maintaining cell biological characteristics by regulating microtubule dynamics, especially entry into mitosis; phosphorylated Op18/stathmin promotes microtubule polymerization to form the mitotic spindle, which is essential for chromosome segregation and cell division. Cdc2 is a critical kinase in starting M phase events in cell‐cycle progression and is a positive regulator of the cell cycle. Latent membrane protein 1 (LMP1) is an Epstein‐Barr virus (EBV)‐encoded oncogenic protein that is able to induce carcinogenesis via various signaling pathways. This study focused on regulation by LMP1 of Op18/stathmin signaling in nasopharyngeal carcinoma (NPC) cells and showed that LMP1 regulates Op18/stathmin signaling through cdc2 mediation, LMP1 upregulates cdc2 kinase activity, and Op18/stathmin phosphorylation promotes the interaction of cdc2 with Op18/stathmin and microtubule polymerization during mitosis, and inhibition of LMP1 expression attenuates the interaction of cdc2 and Op18/stathmin and promotes microtubule depolymerization. These results reveal a new pathway via which LMP1 regulates Op18/stathmin signaling by cdc2 mediation; this new signaling pathway not only perfects the LMP1 regulation network but also elucidates the molecular mechanism of LMP1 that leads to carcinogenesis.


PLOS ONE | 2013

Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

Juan Xu; Xiyun Deng; Min Tang; Lili Li; Lanbo Xiao; Lifang Yang; Juanfang Zhong; Ann M. Bode; Zigang Dong; Yongguang Tao; Ya Cao

The latent membrane protein 1 (LMP1), which is encoded by the Epstein-Barr virus (EBV), is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC), a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1), an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR) pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

Collaboration


Dive into the Yongguang Tao's collaboration.

Top Co-Authors

Avatar

Ya Cao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Shuang Liu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ying Shi

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yiqun Jiang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ling Chen

Central South University

View shared research outputs
Top Co-Authors

Avatar

Bin Yan

Central South University

View shared research outputs
Top Co-Authors

Avatar

Desheng Xiao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Min Tang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jiantao Jia

Central South University

View shared research outputs
Top Co-Authors

Avatar

Lili Li

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge