Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yonghong Bi is active.

Publication


Featured researches published by Yonghong Bi.


Chemosphere | 2009

Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD).

Jingxian Wang; Yonghong Bi; Gerd Pfister; Bernhard Henkelmann; Kongxian Zhu; Karl-Werner Schramm

Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) were measured in the water column from Three Gorges Reservoir (TGR) collected in May 2008 using semipermeable membrane devices (SPMDs). The sampling sites spanned the whole reservoir from the upstream Chongqing to the great dam covering more than 600 km long distance with water flow velocities ranging from <0.05 to 1.5 ms(-1). This is the first experience of SPMD application in the biggest reservoir in the world. The results of water sampling rates based on performance reference compounds (PRC) were tested to be significantly correlated with water flow velocities in the big river. Results of back-calculated aqueous concentrations based on PRC showed obvious regional variations of PAH, PCB and OCP levels in the reservoir. Total PAH ranged from 13.8 to 97.2 ngL(-1), with the higher concentrations occurring in the region of upstream and near the dam. Phenanthrene, fluoranthene, pyrene and chrysene were the predominant PAH compounds in TGR water. Total PCB ranged from 0.08 to 0.51 ngL(-1), with the highest one occurring in the region near the dam. PCB 28, 52, 101, 138, 153, 180, 118 were the most abundant PCB congeners in the water. The total OCP ranged from 2.33 to 3.60 ngL(-1) and the levels showed homogenous distribution in the whole reservoir. HCH, DDT and HCB, PeCB were the major compounds of OCP fingerprints. Based on water quality criteria, the TGR water could be designated as being polluted by HCB and PAH. Data on PAH, PCB and OCP concentrations found in this survey can be used as reference levels for future POP monitoring programmes in TGR.


Scientific Reports | 2015

Impacts of the Three Gorges Dam on microbial structure and potential function

Qingyun Yan; Yonghong Bi; Ye Deng; Zhili He; Liyou Wu; Joy D. Van Nostrand; Zhou Shi; Jinjin Li; Xi Wang; Zhengyu Hu; Yuhe Yu; Jizhong Zhou

The Three Gorges Dam has significantly altered ecological and environmental conditions within the reservoir region, but how these changes affect bacterioplankton structure and function is unknown. Here, three widely accepted metagenomic tools were employed to study the impact of damming on the bacterioplankton community in the Xiangxi River. Our results indicated that bacterioplankton communities were both taxonomically and functionally different between backwater and riverine sites, which represent communities with and without direct dam effects, respectively. There were many more nitrogen cycling Betaproteobacteria (e.g., Limnohabitans), and a higher abundance of functional genes and KEGG orthology (KO) groups involved in nitrogen cycling in the riverine sites, suggesting a higher level of bacterial activity involved in generating more nitrogenous nutrients for the growth of phytoplankton. Additionally, the KO categories involved in carbon and sulfur metabolism, as well as most of the detected functional genes also showed clear backwater and riverine patterns. As expected, these diversity patterns all significantly correlated with environmental characteristics, confirming that the bacterioplankton communities in the Xiangxi River were really affected by environmental changes from the Three Gorges Dam. This study provides a first comparative metagenomic insight for evaluating the impacts of the large dam on microbial function.


Science of The Total Environment | 2013

Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China

Kongxian Zhu; Yonghong Bi; Zhengyu Hu

Daning River is a deep tributary of Three Gorges Reservoir (TGR) in China, with water level fluctuations of 30 m annually. It was assumed that the hydrologic regime would be the main driving force in the self-assembling of the phytoplankton community in the river. In order to test this hypothesis, limnological study was performed monthly in the estuary, midstream and upstream of this tributary from May 2008 to April 2009. We identified 17 phytoplankton functional groups among 63 genera. These phytoplankton functional groups varied significantly, both seasonally and longitudinally. During the flood season (March-September), low water level and high inflows caused a marked increase in the turbidity, especially in the estuary and upstream, allowing functional group MP (the meroplanktonic diatoms) to dominate the phytoplankton community. Meanwhile, constant water level and high temperature led to the stability and thermal stratification in the midstream. These conditions resulted in a high phytoplankton biomass and the dominance of phytoplankton functional groups Y (Cryptomonas spp.) and Lo (motile Peridiniopsis niei and Peridinium) that were adapted to water stratification. During the dry season (October-February), although the inflows were low and water retention time was long, the thermal stratification was disrupted by the disturbance due to the impoundment of TGR, and the water column was deeply mixed. The phytoplankton biomass reduced and functional groups changed: group Lo declined, and group C (small diatom Cyclotella meneghiniana) increased in the estuary and midstream. Group Y replaced group MP to dominate the phytoplankton community in the upstream with the water becoming clear and stagnant. It could be deduced that the dynamics of phytoplankton in the Daning River were mainly influenced by hydrologic regime.


Environmental Science & Technology | 2017

Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China

Kai Zhang; Xiong Xiong; Hongjuan Hu; Chenxi Wu; Yonghong Bi; Yonghong Wu; Bingsheng Zhou; Paul K.S. Lam; Jiantong Liu

Microplastic pollution in inland waters is receiving growing attentions. Reservoirs are suspected to be particularly vulnerable to microplastic pollution. However, very limited information is currently available on pollution characteristics of microplastics in reservoir ecosystems. This work studied the distribution and characteristics of microplastics in the backwater area of Xiangxi River, a typical tributary of the Three Gorges Reservoir. Microplastics were detected in both surface water and sediment with concentrations ranging from 0.55 × 105 to 342 × 105 items km-2 and 80 to 864 items m-2, respectively. Polyethylene, polypropylene, and polystyrene were identified in surface water, whereas polyethylene, polypropylene, and polyethylene terephthalate, and pigments were observed in sediment. In addition, microplastics were also detected in the digestion tracts of 25.7% of fish samples, and polyethylene and nylon were identified. Redundancy analysis indicates a weak correlation between microplastics and water quality variables but a negative correlation with water level of the reservoir and Secchi depth. Results from this study confirm the presence of high abundance microplastics in reservoir impacted tributaries, and suggest that water level regulated hydrodynamic condition and input of nonpoint sources are important regulators for microplastic accumulation and distribution in the backwater area of reservoir tributaries.


Environmental Science and Pollution Research | 2013

Dechlorination and organohalide-respiring bacteria dynamics in sediment samples of the Yangtze Three Gorges Reservoir

Irene Kranzioch; Claudia Stoll; Andreas Holbach; Hao Chen; Lijing Wang; Binghui Zheng; Stefan Norra; Yonghong Bi; Karl-Werner Schramm; Andreas Tiehm

Several groups of bacteria such as Dehalococcoides spp., Dehalobacter spp., Desulfomonile spp., Desulfuromonas spp., or Desulfitobacterium spp. are able to dehalogenate chlorinated pollutants such as chloroethenes, chlorobenzenes, or polychlorinated biphenyls under anaerobic conditions. In order to assess the dechlorination potential in Yangtze sediment samples, the presence and activity of the reductively dechlorinating bacteria were studied in anaerobic batch tests. Eighteen sediment samples were taken in the Three Gorges Reservoir catchment area of the Yangtze River, including the tributaries Jialing River, Daning River, and Xiangxi River. Polymerase chain reaction analysis indicated the presence of dechlorinating bacteria in most samples, with varying dechlorinating microbial community compositions at different sampling locations. Subsequently, anaerobic reductive dechlorination of tetrachloroethene (PCE) was tested after the addition of electron donors. Most cultures dechlorinated PCE completely to ethene via cis-dichloroethene (cis-DCE) or trans-dichloroethene. Dehalogenating activity corresponded to increasing numbers of Dehalobacter spp., Desulfomonile spp., Desulfitobacterium spp., or Dehalococcoides spp. If no bacteria of the genus Dehalococcoides spp. were present in the sediment, reductive dechlorination stopped at cis-DCE. Our results demonstrate the presence of viable dechlorinating bacteria in Yangtze samples, indicating their relevance for pollutant turnover.


Environmental Science and Pollution Research | 2012

The Yangtze-Hydro Project: a Chinese–German environmental program

A. Bergmann; Yonghong Bi; Lei Chen; Tilman Floehr; B. Henkelmann; Andreas Holbach; Henner Hollert; Wei Hu; Irene Kranzioch; E. Klumpp; S. Küppers; Stefan Norra; Richard Ottermanns; G. Pfister; Martina Roß-Nickoll; Andreas Schäffer; Nina Schleicher; Burkhard Schmidt; Björn Scholz-Starke; Karl-Werner Schramm; G. Subklew; Andreas Tiehm; C. Temoka; Jun-Tao Wang; Bernhard Westrich; R.-D. Wilken; A. Wolf; X. Xiang; Y. Yuan

Water of good quality is one of the basic needs of human life. Worldwide, great efforts are being undertaken for an assured water supply. In this respect, one of the largest water technology projects worldwide is the Yangtze Three Gorges Dam in China. There is a need for extensive scientific and technical understanding of the challenges arising from this large hydrological engineering project. German and Chinese groups from various scientific fields are collaborating to provide knowledge for the sustainable management of the reservoir. In this project description, the Yangtze Three Gorges Dam Project, its goals and challenges, are described in brief, and the contributions of the German research projects are presented.


Chemosphere | 2015

The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium

Binliang Wang; Xi Wang; Yiwei Hu; Mingxian Chang; Yonghong Bi; Zhengyu Hu

In order to get insight into the impacts of UVC/H2O2 on Microcystis aeruginosa, physiological and morphological changes as well as toxicity were detected under different UVC/H2O2 treatments. In the presence of sole UVC or H2O2, the net oxygen evolution rate decreased significantly (p<0.05) since activity of photosystem II (PSII) was inhibited. Meanwhile, increase of intracellular reactive oxygen species (ROS), degradation of microcystin (MC) and ultrastructure destructions were observed. Under sole UVC treatment, no changes happened in the activity of photosystem I (PSI), but the degradation of D1 protein was observed. Under sole H2O2 treatment, an increase of malondialdehyde, aggregation of D1 protein and deformation of the thylakoid membrane were observed. ROS content under H2O2 treatment was about 5 times than that under UVC treatment. Combined use of UVC and H2O2, as well as 20mJcm(-2) UVC and 60μM H2O2, showed high synergetic effects. Obvious damage to membrane systems, the marked degradation of MC and inhibition of the photosystems were observed. It could be deduced that UVC worked on intracellular membrane components directly and the damaged oxygen-evolving complex, which was followed by the D1 protein degradation. H2O2 oxidised the membrane lipids via an ROS-mediated process, with thylakoid injury and the aggregation of D1 protein being the lethal mechanisms, and both PSII and PSI being the attacking targets. With regard towards the effective inactivation of M. aeruginosa and high removal of MC, UVC/H2O2 proposed a novel practical method in controlling cyanobacterial blooms.


Environmental Science & Technology | 2014

Three Gorges Reservoir: Density Pump Amplification of Pollutant Transport into Tributaries

Andreas Holbach; Stefan Norra; Lijing Wang; Yuan Yijun; Wei Hu; Binghui Zheng; Yonghong Bi

The impoundment of the Three Gorges Reservoir (TGR) on the Yangtze River in China burdened its tributary backwaters with severe environmental problems.1 Confluence zones of reservoir tributaries with the Yangtze River main channel are main drivers of pollutant dynamics in the TGR2 and are thus keys to develop mitigation measures. Here, we show a novel experimental approach of spatiotemporal water quality analysis to trace water mass movements and identify pollutant transport pathways in reservoir water bodies. Our results show the movements of density currents in a major tributary backwater of the TGR. A huge interflow density current from the Yangtze River main channel transported its heavy metal carriage to the upstream reaches of the tributary backwater. Water from the upstream backwater moved counterwise and carried less but pollutant-enriched suspended sediments. This scenario illustrates the importance of confluence zone hydrodynamics for fates and pathways of pollutants through the widely unknown hydrodynamics of new reservoirs.


Science of The Total Environment | 2014

PAH distribution and mass fluxes in the Three Gorges Reservoir after impoundment of the Three Gorges Dam

Dominik Deyerling; Jingxian Wang; Wei Hu; Bernhard Westrich; Chengrong Peng; Yonghong Bi; Bernhard Henkelmann; Karl-Werner Schramm

Mass fluxes of polycyclic aromatic hydrocarbons (PAHs) were calculated for the Three Gorges Reservoir (TGR) in China, based on concentration and discharge data from the Yangtze River. Virtual Organisms (VOs) have been applied during four campaigns in 2008, 2009 (twice) and 2011 at sampling sites distributed from Chongqing to Maoping. The total PAH mass fluxes ranged from 110 to 2,160 mg s(-1). Highest loads were determined at Chongqing with a decreasing trend towards Maoping in all four sampling campaigns. PAH remediation capacity of the TGR was found to be high as the mass flux reduced by more than half from upstream to downstream. Responsible processes are thought to be adsorption of PAH to suspended particles, dilution and degradation. Furthermore, the dependence of PAH concentration upon water depth was investigated at Maoping in front of the Three Gorges Dam. Although considerable differences could be revealed, there was no trend observable. Sampling of water with self-packed filter cartridges confirmed more homogenous PAH depth distribution. Moreover, PAH content of suspended particles was estimated from water concentrations gathered by VOs based on a water-particle separation model and subsequently compared to PAH concentration measured in water and in filter cartridges. It could be shown that the modeled data predicts the concentration caused by particle-bound PAHs to be about 6 times lower than PAHs dissolved in water. Besides, the model estimates the proportions of 5- and 6-ring PAHs being higher than in water phase.


Science of The Total Environment | 2016

PAHs and PCBs accumulated by SPMD-based virtual organisms and feral fish in Three Gorges Reservoir, China

Jingxian Wang; Yonghong Bi; Bernhard Henkelmann; Gerd Pfister; Liang Zhang; Karl-Werner Schramm

Polycyclic aromatic hydrocarbon (PAHs) and polychlorinated biphenyls (PCBs) accumulated by semipermeable membrane device (SPMD)-based virtual organisms (VOs) and local feral fish were studied in Three Gorges Reservoir (TGR), China. VOs were deployed at seven sites in TGR for two periods in 2009 and 5 species of fish with different living habitats and feeding habits collected in the same periods from two counties in TGR. The concentration and profile of PAHs and PCBs in fish were quite different from those in VOs. Most high-molecular-weight-PAHs were detected in VOs, while they were undetected in fish. Most PCBs were undetected in VOs, while most of them were detected in fish. Low-molecular-weight-PAHs were predominant contaminants of PAHs and non-dioxin-like-PCBs were the main PCBs in fish. The levels of PAHs and PCBs in the few fish samples were low and were not of concern based on chemical contaminant limits of non-carcinogenic effect.

Collaboration


Dive into the Yonghong Bi's collaboration.

Top Co-Authors

Avatar

Zhengyu Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jingxian Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kongxian Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangjie Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuemin Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andreas Holbach

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Norra

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wei Hu

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Binghui Zheng

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Jianlin Hu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge