Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongjun Zhao is active.

Publication


Featured researches published by Yongjun Zhao.


Bioresource Technology | 2013

Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process.

Yongjun Zhao; Juan Wang; Hui Zhang; Cheng Yan; Yuejin Zhang

Biogas is a well-known, primary renewable energy source, but its utilizations are possible only after upgrading. The microalgae-based bag photo-bioreactor utilized in this research could effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. Red light was determined as the optimal light wavelength for microalgae growth, biogas upgrading, and digestate nutrient reduction. In the range of moderate light intensities (i.e., 800, 1200, 1600, and 2000 μmol m(-2) s(-1)), higher light intensities achieved higher biogas upgrade and larger digestate nutrient reduction. Methane content attained the highest value of 92.74±3.56% (v/v). The highest chemical oxygen demand, total nitrogen, and total phosphorus reduction efficiency of digestate were 85.35±1.04%, 77.98±1.84%, and 73.03±2.14%, respectively. Considering the reduction and economic efficiencies of the carbon dioxide content of biogas and digestate nutrient as well as the biogas upgrading standard, the optimal light intensity range was determined to be from 1200 to 1600 μmol m(-2) s(-1).


Journal of Hazardous Materials | 2012

Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating synthetic municipal wastewater

Cheng Yan; Hui Zhang; Bo Li; Dong Wang; Yongjun Zhao; Zheng Zheng

Greenhouse gases (GHG) emissions from constructed wetlands (CWs) can mitigate the environmental benefits of nutrient removal because reduced water pollution could be replaced by emission of GHG. Therefore, the GHG (CO(2) and CH(4)) fluxes of vertical subsurface flow constructed wetlands (VSSF CWs) under different influent C/N ratios of synthetic municipal wastewater were analyzed directly by GHG flux measurements, and estimated by carbon mass balance (CMB) over a 12 month period. The VSSF CWs system achieved the highest biological nutrient removal (BNR) efficiency between C/N ratios of 5:1 and 10:1 across all kinds of pollutants. Variation in influent C/N ratios dramatically influenced GHG fluxes from the VSSF CWs system. The GHG flux measured in situ agreed with those predicted by the CMB model and represented relatively low GHG fluxes when C/N ratios were between 2.5:1 and 5:1. It was determined that the optimum C/N ratio is 5:1, at which VSSF CWs can achieve a relatively high BNR efficiency and a low level of GHG flux.


Bioresource Technology | 2015

Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths

Yongjun Zhao; Shiqing Sun; Changwei Hu; Hui Zhang; Jie Xu; Lifeng Ping

The three microalgal strains were cultivated, namely, Chlorella vulgaris, Scenedesmus obliquus, and Neochloris oleoabundans, by applying mixed light-emitting diode wavelength treatments to biogas slurry in a photobioreactor bag. This study aims to compare the growth and nutrient removal efficiency of the algae and determine their roles for biogas upgrading. At red:blue=5:5, S. obliquus and C. vulgaris efficiently removed COD and TP, respectively. S. obliquus demonstrated high N removal efficiency at red:blue=7:3. The same strain significantly improved removal capacity for all nutrients compared with C. vulgaris and N. oleoabundans, particularly at red:blue=5:5, 7:3, and 3:7. For biogas upgrade, CH4 contents were higher than 75% (v/v) for all strains. The algae exhibited particularly good CH4 enrichment at red:blue=7:3, 5:5. Results show that microalgal biomass production offers real opportunities for addressing issues, such as nutrient reduction, CO2 removal, and biogas enrichment.


Journal of Hazardous Materials | 2011

Carbons prepared from Spartina alterniflora and its anaerobically digested residue by H3PO4 activation: Characterization and adsorption of cadmium from aqueous solutions

Zhengfang Wang; Er Nie; Jihua Li; Yongjun Zhao; Xingzhang Luo; Zheng Zheng

Two series of activated carbons were prepared from Spartina alterniflora and from its anaerobically digested residue by H(3)PO(4) activation at various process conditions, and used as adsorbents for the removal of cadmium (II) in aqueous solutions. The surface areas and pore volumes of carbons were derived from adsorption isotherms (N(2) at 77K). The surface chemistry of carbons was investigated by infrared spectroscopy. Comparison study indicated that physicochemical properties of the activated carbons were strongly dependent not only on activation conditions but also on biopolymer contents of precursors. Several isotherm models were investigated and the adsorption isotherm data were best represented by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 47.85 mg/g at 25 °C. The results showed that the activated carbon produced from S. alterniflora could be employed as a promising adsorbent for removing cadmium (II) from aqueous solutions.


International Journal of Environmental Science and Technology | 2011

Effects of plants development and pollutant loading on performance of vertical subsurface flow constructed wetlands

B. Cheng; C. W. Hu; Yongjun Zhao

The influent concentration has a great effect on nutrients removal efficiency in vertical subsurface flow constructed wetland systems, but treatment performance response to different C: N: P ratios in the influent are unclear at present. At the first growing seasons, the effects of the plants present or not, season, the different C: N: P ratio in influent condition and their interaction on treatment performances were studied in the planted or the unplanted wetlands in greenhouse condition. Each set of units was operated at hydraulic loading rates of 40 L/d. Low, medium and high-strength (100, 200, 400 mg/L of chemical oxygen demand or 20, 40, 80 mg/L total nitrogen) synthetic sewage were applied as influent. According to the first growing season results, the average removal efficiencies for the unplanted and the planted wetlands were as follows: chemical oxygen demand (44–58 % and 55–61 % respectively), total nitrogen (26–49% and 31–54 %) and total phosphorus (36–64 % and 70–83 %). The both wetlands system was operated as an efficient treatment system of highest average removal rates of both chemical oxygen demand and total phosphorus when medium-strength synthetic sewage were applied. When high strength synthetic sewage was applied, the planted wetlands usually had a higher nutrients removal rates than the unplanted over the study period. The plants grew well under any high loading treatment over the study period. Anyhow, it also proved that the wetland systems have a good capacity to treat different strength wastewater in greenhouse condition.


Environmental Science and Pollution Research | 2012

Effect of C/N ratios on the performance of earthworm eco-filter for treatment of synthetics domestic sewage

Yongjun Zhao; Cheng Yan; Yinliang Li; Jihua Li; Mo Yang; Er Nie; Zheng Zheng; Xingzhang Luo

PurposeThe performances of filter systems that use earthworms and plants, combined with earthworm eco-filter (EE) systems in treating synthetic domestic sewage (SDS) with different C/N ratios, were investigated for a 9-month period.MethodsThe effects of the combination of filters, earthworms, plants, as well as the combination of earthworms and plants on SDS nutrient removal efficiency were separately investigated to select the optimum system for treating SDS. The results of the current study could be used to determine how treatment performance responds to different C/N ratios and to explain and predict the performance of an operating EE system.ResultsEE systems with earthworms and plants (EP groups) consistently performed better than the other types of systems (CK, E, and P; that is, without earthworms and without plants, with earthworms and without plants, and without earthworms and with plants, respectively) under all C/N ratios. The highest removal efficiencies of chemical oxygen demand, total nitrogen, total phosphorus, and total organic carbon were achieved under C/N ratios of 6:1, 6:1, 6:1, and 9:1, respectively. The optimum nutrient removal efficiency was achieved at C/N = 6, and the contribution order for nutrient removal was EP > P > E > CK.ConclusionsInfluent C/N ratios, the time of year, and the synergetic effects of earthworm behavior and microorganisms significantly affected nutrient removal efficiencies. Considering the removal of all nutrients, EE systems with plants and earthworms achieved optimum removal effects in July when the influent C/N ratio was controlled at 6. Appropriate control of carbon and nitrogen source concentrations permitted the achievement of optimal nutrient removal effects.


Environmental Science: Processes & Impacts | 2014

Effects of influent C/N ratios on wastewater nutrient removal and simultaneous greenhouse gas emission from the combinations of vertical subsurface flow constructed wetlands and earthworm eco-filters for treating synthetic wastewater

Yongjun Zhao; Yuejin Zhang; Zhigang Ge; Changwei Hu; Hui Zhang

This research focused on the nutrient removal and the simultaneous CO2, CH4, and N2O emission rates of various combinations of vertical subsurface flow constructed wetlands (VSFCWs) and earthworm eco-filters (EEs) under different influent C/N ratios in synthetic wastewater. The optimal parameters for nutrient removal were influent C/N ratios of 5 : 1 and 10 : 1 as well as the combination VSFCW-EE. Relatively low values of greenhouse gas (GHG) emission rates measured in situ were obtained at a C/N ratio of 5 : 1. The emission rates of CH4 and N2O were considerably lower than that of CO2. The VSFCW-EE and EE-VSFCW combinations showed similar GHG emission results. The C/N ratio of 5 : 1 and the VSFCW-EE combination exhibited the highest nutrient removal efficiency with the lowest GHG emission rate. Wastewater nutrient removal and GHG emission were both high during summer (June to August) and low during winter (December to February).


Iranian Journal of Environmental Health Science & Engineering | 2013

Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities

Zhigang Ge; Hui Zhang; Yuejin Zhang; Cheng Yan; Yongjun Zhao

The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.


Journal of Hazardous Materials | 2011

Photolysis of gaseous butyl acetate using built-in microwave discharge electrodeless lamps.

Yongjun Zhao; Qi Chen; Huiqi Hou; Jian He

This paper examined the photolysis of gaseous butyl acetate by built-in microwave discharge electrodeless lamps. Bromine and iodine lamps were used to investigate the effects of microwave input power, inlet concentration, gas residence time, and different filling materials on butyl acetate decomposition and energy yield. Water vapor and ammonia were utilized as additional chemicals to determine if they can improve removal efficiency. Built-in structure and external structure were also compared. When the gas flow velocity is 0.025 m/s, and the inlet concentration is 1.5 mg/m(3), the removal efficiency of butyl acetate can reach over 78%, which is the highest in this study. Additional water vapor and ammonia can hardly improve the degradation. To some extent, built-in MDELs are better than external MDELs. The results will help promote the study of microwave discharge electrodeless lamps and their effect on the degradation of gaseous pollutants. Maybe, as the research goes on, it could realize the span from laboratory scale to practical application, and will become an advanced technology for the gaseous pollutants control.


Bioresource Technology | 2017

Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods

Weixing Cao; Xue Wang; Shiqing Sun; Changwei Hu; Yongjun Zhao

In order to purify biogas slurry and biogas simultaneously, three different fungi, Pleurotus geesteranus (P. geesteranus), Ganoderma lucidum (G. lucidum), and Pleurotus ostreatus (P. ostreatus) were pelletized with Chlorella vulgaris (C. vulgaris). The results showed that the optimal light wavelength ratio for red:blue was 5:5 for these three different fungi-assisted C. vulgaris, resulting in higher specific growth rate as well as nutrient and CO2 removal efficiency compared with other ratios. G. lucidum/C. vulgaris was screened as the best fungi-mialgae for biogas slurry purification and biogas upgrading with light/dark ratio of 14h:10h, which was also confirmed by the economic efficiency analysis of the energy consumptions. These results will provide a theoretical foundation for large-scale biogas slurry purifying and biogas upgrading using microalgae.

Collaboration


Dive into the Yongjun Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Li

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge