Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongmin Liu is active.

Publication


Featured researches published by Yongmin Liu.


Science | 2008

Optical Negative Refraction in Bulk Metamaterials of Nanowires

Jie Yao; Zhaowei Liu; Yongmin Liu; Yuan Wang; Cheng Sun; Guy Bartal; Angelica M. Stacy; Xiang Zhang

Negative refraction in metamaterials has generated great excitement in the scientific community. Although negative refraction has been realized in microwave and infrared by using metamaterials and by using two-dimensional waveguide structures, creation of a bulk metamaterial showing negative refraction at visible frequency has not been successful, mainly because of the significant resonance losses and fabrication difficulties. We report bulk metamaterials made of nanowires that show such negative refraction for all incident angles in the visible region. Moreover, the negative refraction occurs far from any resonance, resulting in a low-loss and a broad-band propagation at visible frequencies. These remarkable properties can substantially affect applications such as imaging, three-dimensional light manipulation, and optical communication.


Nature | 2011

Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging

Hu Cang; Anna Labno; Changgui Lu; Xiaobo Yin; Ming Liu; Christopher Gladden; Yongmin Liu; Xiang Zhang

When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1–2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200–300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.


Nature Nanotechnology | 2011

Plasmonic Luneburg and Eaton lenses

Yongmin Liu; Maiken H. Mikkelsen; Jason Valentine; Xiang Zhang

Plasmonics takes advantage of the properties of surface plasmon polaritons, which are localized or propagating quasiparticles in which photons are coupled to the quasi-free electrons in metals. In particular, plasmonic devices can confine light in regions with dimensions that are smaller than the wavelength of the photons in free space, and this makes it possible to match the different length scales associated with photonics and electronics in a single nanoscale device. Broad applications of plasmonics that have been demonstrated to date include biological sensing, sub-diffraction-limit imaging, focusing and lithography and nano-optical circuitry. Plasmonics-based optical elements such as waveguides, lenses, beamsplitters and reflectors have been implemented by structuring metal surfaces or placing dielectric structures on metals to manipulate the two-dimensional surface plasmon waves. However, the abrupt discontinuities in the material properties or geometries of these elements lead to increased scattering of surface plasmon polaritons, which significantly reduces the efficiency of these components. Transformation optics provides an alternative approach to controlling the propagation of light by spatially varying the optical properties of a material. Here, motivated by this approach, we use grey-scale lithography to adiabatically tailor the topology of a dielectric layer adjacent to a metal surface to demonstrate a plasmonic Luneburg lens that can focus surface plasmon polaritons. We also make a plasmonic Eaton lens that can bend surface plasmon polaritons. Because the optical properties are changed gradually rather than abruptly in these lenses, losses due to scattering can be significantly reduced in comparison with previously reported plasmonic elements.


Nano Letters | 2010

Transformational Plasmon Optics

Yongmin Liu; Guy Bartal; Xiang Zhang

We propose and demonstrate efficiently molding surface plasmon polaritons (SPPs) based on transformation optics. SPPs are surface modes of electromagnetic waves tightly bound at metal-dielectric interfaces, which allow us to scale optics beyond the diffraction limit. Taking advantage of transformation optics, here we show that the propagation of SPPs can be manipulated in a prescribed manner by careful control of the dielectric material properties adjacent to a metal. Since the metal properties are completely unaltered, this methodology provides a practical way for routing light at very small scales. For instance, our approach enables SPPs to travel at uneven and curved surfaces over a broad wavelength range, where SPPs would normally suffer significant scattering losses. In addition, a plasmonic 180 degrees waveguide bend and a plasmonic Luneburg lens with simple designs are presented. The unique design flexibility of the transformational plasmon optics introduced here may open a new door to nano optics and downscaling of photonic circuits.


Nature Nanotechnology | 2010

Light-driven nanoscale plasmonic motors

Ming Liu; Yongmin Liu; Guy Bartal; Xiang Zhang

When Sir William Crookes developed a four-vaned radiometer, also known as the light-mill, in 1873, it was believed that this device confirmed the existence of linear momentum carried by photons, as predicted by Maxwells equations. Although Reynolds later proved that the torque on the radiometer was caused by thermal transpiration, researchers continued to search for ways to take advantage of the momentum of photons and to use it for generating rotational forces. The ability to provide rotational force at the nanoscale could open up a range of applications in physics, biology and chemistry, including DNA unfolding and sequencing and nanoelectromechanical systems. Here, we demonstrate a nanoscale plasmonic structure that can, when illuminated with linearly polarized light, generate a rotational force that is capable of rotating a silica microdisk that is 4,000 times larger in volume. Furthermore, we can control the rotation velocity and direction by varying the wavelength of the incident light to excite different plasmonic modes.


Optics Express | 2008

All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region

Yongmin Liu; Guy Bartal; Xiang Zhang

We theoretically demonstrated that all-angle negative refraction and imaging can be implemented by metallic nanowires embedded in a dielectric matrix. When the separation between the nanowires is much smaller than the incident wavelength, these structures can be characterized as indefinite media, whose effective permittivities perpendicular and parallel to the wires are opposite in signs. Under this condition, the dispersion diagram is hyperbolic for transverse magnetic waves propagating in the nanowire system, thereby exhibiting all-angle negative refraction. Such indefinite media can operate over a broad frequency range (visible to near-infrared) far from any resonances, thus they offer an effective way to manipulate light propagation in bulk media with low losses, allowing potential applications in photonic devices.


Nano Letters | 2011

Optical Forces in Hybrid Plasmonic Waveguides

Xiaodong Yang; Yongmin Liu; Rupert F. Oulton; Xiaobo Yin; Xiang Zhang

We demonstrate that in a hybrid plasmonic system the optical force exerted on a dielectric waveguide by a metallic substrate is enhanced by more than 1 order of magnitude compared to the force between a photonic waveguide and a dielectric substrate. A nanoscale gap between the dielectric waveguide and the metallic substrate leads to deep subwavelength optical energy confinement with ultralow mode propagation loss and hence results in the enhanced optical forces at low input optical power, as numerically demonstrated by both Maxwells stress tensor formalism and the coupled mode theory analysis. Moreover, the hybridization between the surface plasmon modes and waveguide modes allows efficient optical trapping of single dielectric nanoparticle with size of only several nanometers in the gap region, manifesting various optomechanical applications such as nanoscale optical tweezers.


Optics Letters | 2011

Plasmonic Airy beams with dynamically controlled trajectories

Peng Zhang; Sheng Wang; Yongmin Liu; Xiaobo Yin; Changgui Lu; Zhigang Chen; Xiang Zhang

We report the experimental generation and dynamic trajectory control of plasmonic Airy beams (PABs). The PABs are created by directly coupling free-space Airy beams to surface plasmon polaritons through a grating coupler on a metal surface. We show that the ballistic motion of the PABs can be reconfigured in real time by either a computer addressed spatial light modulator or mechanical means.


Nano Letters | 2012

Compact Magnetic Antennas for Directional Excitation of Surface Plasmons

Yongmin Liu; Stefano Palomba; Yong-Shik Park; Xiaobo Yin; Xiang Zhang

Plasmonics is considered as one of the most promising candidates for implementing the next generation of ultrafast and ultracompact photonic circuits. Considerable effort has been made to scale down individual plasmonic components into the nanometer regime. However, a compact plasmonic source that can efficiently generate surface plasmon polaritons (SPPs) and deliver SPPs to the region of interest is yet to be realized. Here, bridging the optical antenna theory and the recently developed concept of metamaterials, we demonstrate a subwavelength, highly efficient plasmonic source for directional generation of SPPs. The designed device consists of two nanomagnetic resonators with detuned resonant frequencies. At the operating wavelength, incident photons can be efficiently channeled into SPP waves modulated by the electric field polarization. By tailoring the relative phase at resonance and the separation between the two nanoresonators, SPPs can be steered to predominantly propagate along one specific direction. This novel magnetic nanoantenna paves a new way to manipulate photons in the near-field, and also could be useful for SPP-based nonlinear applications, active modulations, and wireless optical communications.


Optics Express | 2011

Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source.

Matthew D. Seaberg; Daniel E. Adams; E. Townsend; Daisy Raymondson; W. F. Schlotter; Yongmin Liu; Carmen S. Menoni; Henry C. Kapteyn; Margaret M. Murnane

New diffractive imaging techniques using coherent x-ray beams have made possible nanometer-scale resolution imaging by replacing the optics in a microscope with an iterative phase retrieval algorithm. However, to date very high resolution imaging (< 40 nm) was limited to large-scale synchrotron facilities. Here, we present a significant advance in image resolution and capabilities for desktop soft x-ray microscopes that will enable widespread applications in nanoscience and nanotechnology. Using 13 nm high harmonic beams, we demonstrate a record 22 nm spatial resolution for any tabletop x-ray microscope. Finally, we show that unique information about the sample can be obtained by extracting 3-D information at very high numerical apertures.

Collaboration


Dive into the Yongmin Liu's collaboration.

Top Co-Authors

Avatar

Xiang Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Kan Yao

Northeastern University

View shared research outputs
Top Co-Authors

Avatar

Guy Bartal

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cheng Sun

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaobo Yin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge