Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongmin Yan is active.

Publication


Featured researches published by Yongmin Yan.


Stem Cells and Development | 2013

Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis.

Tingfen Li; Yongmin Yan; Bingying Wang; Hui Qian; Xu Zhang; Li Shen; Mei Wang; Ying Zhou; Wei Zhu; Wei Li; Wenrong Xu

Mesenchymal stem cells (MSCs) have been considered as an attractive tool for the therapy of diseases. Exosomes excreted from MSCs can reduce myocardial ischemia/reperfusion damage and protect against acute tubular injury. However, whether MSC-derived exosomes can relieve liver fibrosis and its mechanism remain unknown. Previous work showed that human umbilical cord-MSCs (hucMSCs) transplanted into acutely injured and fibrotic livers could restore liver function and improve liver fibrosis. In this study, it was found that transplantation of exosomes derived from hucMSC (hucMSC-Ex) reduced the surface fibrous capsules and got their textures soft, alleviated hepatic inflammation and collagen deposition in carbon tetrachloride (CCl4)-induced fibrotic liver. hucMSC-Ex also significantly recovered serum aspartate aminotransferase (AST) activity, decreased collagen type I and III, transforming growth factor (TGF)-β1 and phosphorylation Smad2 expression in vivo. In further experiments, we found that epithelial-to-mesenchymal transition (EMT)-associated markers E-cadherin-positive cells increased and N-cadherin- and vimentin-positive cells decreased after hucMSC-Ex transplantation. Furthermore, the human liver cell line HL7702 underwent typical EMT after induction with recombinant human TGF-β1, and then hucMSC-Ex treatment reversed spindle-shaped and EMT-associated markers expression in vitro. Taken together, these results suggest that hucMSC-Ex could ameliorate CCl4-induced liver fibrosis by inhibiting EMT and protecting hepatocytes. This provides a novel approach for the treatment of fibrotic liver disease.


Stem Cell Research & Therapy | 2013

Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro

Ying Zhou; Huitao Xu; Wenrong Xu; Bingying Wang; Huiyi Wu; Yang Tao; Bin Zhang; Mei Wang; Fei Mao; Yongmin Yan; Shuo Gao; Hongbing Gu; Wei Zhu; Hui Qian

IntroductionAdministration of bone marrow mesenchymal stem cells (MSCs) or secreted microvesicles improves recovery from acute kidney injury (AKI). However, the potential roles and mechanisms are not well understood. In the current study, we focused on the protective effect of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-ex) on cisplatin-induced nephrotoxicity in vivo and in vitro.MethodsWe constructed cisplatin-induced AKI rat models. At 24 h after treatment with cisplatin, hucMSC-ex were injected into the kidneys via the renal capsule; human lung fibroblast (HFL-1)-secreted exosomes (HFL-1-ex) were used as controls. All animals were killed at day 5 after administration of cisplatin. Renal function, histological changes, tubular apoptosis and proliferation, and degree of oxidative stress were evaluated. In vitro, rat renal tubular epithelial (NRK-52E) cells were treated with or without cisplatin and after 6 h treated with or without exosomes. Cells continued to be cultured for 24 h, and were then harvested for western blotting, apoptosis and detection of degree of oxidative stress.ResultsAfter administration of cisplatin, there was an increase in blood urea nitrogen (BUN) and creatinine (Cr) levels, apoptosis, necrosis of proximal kidney tubules and formation of abundant tubular protein casts and oxidative stress in rats. Cisplatin-induced AKI rats treated with hucMSC-ex, however, showed a significant reduction in all the above indexes. In vitro, treatment with cisplatin alone in NRK-52E cells resulted in an increase in the number of apoptotic cells, oxidative stress and activation of the p38 mitogen-activated protein kinase (p38MAPK) pathway followed by a rise in the expression of caspase 3, and a decrease in cell multiplication, while those results were reversed in the hucMSCs-ex-treated group. Furthermore, it was observed that hucMSC-ex promoted cell proliferation by activation of the extracellular-signal-regulated kinase (ERK)1/2 pathway.ConclusionsThe results in the present study indicate that hucMSC-ex can repair cisplatin-induced AKI in rats and NRK-52E cell injury by ameliorating oxidative stress and cell apoptosis, promoting cell proliferation in vivo and in vitro. This suggests that hucMSC-ex could be exploited as a potential therapeutic tool in cisplatin-induced nephrotoxicity.


Cancer Letters | 2012

Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo

Wei Zhu; Ling Huang; Yahong Li; Xu Zhang; Jianmei Gu; Yongmin Yan; Xiaomeng Xu; Mei Wang; Hui Qian; Wenrong Xu

Mesenchymal stem cells (MSCs) can promote tumor growth in a mouse xenograft model, but the exact mechanism remains unclear. In this study, we investigated the effects of bone marrow MSC-derived exosomes (MSC-exosomes) on tumor growth in vitro and in vivo. Our results showed that MSC-exosomes promoted tumor growth in vivo. MSC-exosomes enhanced vascular endothelial growth factor (VEGF) expression in tumor cells by activating extracellular signal-regulated kinase1/2 (ERK1/2) pathway. Inhibition of ERK1/2 activation reserved the increase of VEGF level by MSC-exosomes. Our findings demonstrate a new mechanism through which MSC-exosome-mediated cell-cell interactions may contribute to tumor progression.


Cell Biology International | 2008

Human mesenchymal stem cells isolated from the umbilical cord

Chun Qiao; Wenrong Xu; Wei Zhu; Jiabo Hu; Hui Qian; Qing Yin; Runqiu Jiang; Yongmin Yan; Fei Mao; Huan Yang; Xingzhong Wang; Yongchang Chen

Mesenchymal stem cells (MSCs) are known as a population of multi‐potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. In this study human MSCs were successfully isolated from the umbilical cords. The research characteristics of these cells, e.g., morphologic appearance, surface antigens, growth curve, cytogenetic features, cell cycle, differentiation potential and gene expression were investigated. After 2 weeks of incubation, fibroblast‐like cells appeared to be dominant. During the second passage the cells presented a homogeneous population of spindle fibroblast‐like cells. After more than 4 months (approximately 26 passages), the cells continued to retain their characteristics. Flow cytometry analysis revealed that CD29, CD44, CD95, CD105 and HLA‐I were expressed on the cell surface, but there was no expression of hematopoietic lineage markers, such as CD34, CD38, CD71 and HLA‐DR. Chromosomal analysis showed the cells kept a normal karyotype. The cell cycle at the third passage showed the percentage of G0/G1, G2/M and S phase were 88.86%, 5.69% and 5.45%, respectively. The assays in vitro demonstrated the cells exhibited multi‐potential differentiation into osteogenic and adipogenic cells. Both BMI‐1 and nucleostemin genes, expressed in adult MSCs from bone marrow, were also expressed in umbilical cord MSCs. Here we show that umbilical cords may be a novel alternative source of human MSCs for experimental and clinical applications.


Liver International | 2009

Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo

Yongmin Yan; Wenrong Xu; Hui Qian; Yuan Si; Wei Zhu; Huiling Cao; Hongxing Zhou; Fei Mao

Aims: To investigate human umbilical cord‐derived mesenchymal stem cells (hUCMSCs) for use in the reversal of mouse hepatic injury.


PLOS ONE | 2012

Gastric Cancer Exosomes Trigger Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells to Carcinoma-Associated Fibroblasts through TGF-β/Smad Pathway

Jianmei Gu; Hui Qian; Li Shen; Xu Zhang; Wei Zhu; Ling Huang; Yongmin Yan; Fei Mao; Chonghui Zhao; Yunyan Shi; Wenrong Xu

Background Mesenchymal stem cells (MSCs) promote tumor growth by differentiating into carcinoma-associated fibroblasts (CAFs) and composing the tumor microenvironment. However, the mechanisms responsible for the transition of MSCs to CAFs are not well understood. Exosomes regulate cellular activities by mediating cell-cell communication. In this study, we aimed to investigate whether cancer cell-derived exosomes were involved in regulating the differentiation of human umbilical cord-derived MSCs (hucMSCs) to CAFs. Methodology/Principal Findings We first showed that gastric cancer cell-derived exosomes induced the expression of CAF markers in hucMSCs. We then demonstrated that gastric cancer cell-derived exosomes stimulated the phosphorylation of Smad-2 in hucMSCs. We further confirmed that TGF-β receptor 1 kinase inhibitor attenuated Smad-2 phosphorylation and CAF marker expression in hucMSCs after exposure to gastric cancer cell-derived exosomes. Conclusion/Significance Our results suggest that gastric cancer cells triggered the differentiation of hucMSCs to CAFs by exosomes-mediated TGF-β transfer and TGF-β/Smad pathway activation, which may represent a novel mechanism for MSCs to CAFs transition in cancer.


Stem Cells and Development | 2012

5-Azacytidine Induces Cardiac Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Activating Extracellular Regulated Kinase

Qian Qian; Hui Qian; Xu Zhang; Wei Zhu; Yongmin Yan; Shengqin Ye; Xiujuan Peng; Wei Li; Zhe Xu; Lingyun Sun; Wenrong Xu

5-Azacytidine (5-Aza) induces differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes. However, the underlying mechanisms are not well understood. Our previous work showed that 5-Aza induces human bone marrow-derived MSCs to differentiate into cardiomyocytes. Here, we demonstrated that 5-Aza induced cardiac differentiation of human umbilical cord-derived MSCs (hucMSCs) and explored the potential signaling pathway. Our results showed that hucMSCs had cardiomyocyte phenotypes after 5-Aza treatment. In addition, myogenic cells differentiated from hucMSCs were positive for mRNA and protein of desmin, β-myosin heavy chain, cardiac troponin T, A-type natriuretic peptide, and Nkx2.5. Human diploid lung fibroblasts treated with 5-Aza expressed no cardiac-specific genes. 5-Aza did not induce hucMSCs to differentiate into osteoblasts. Further study revealed that 5-Aza treatment activated extracellular signal related kinases (ERK) in hucMSCs, but protein kinase C showed no response to 5-Aza administration. U0126, a specific inhibitor of ERK, could inhibit 5-Aza-induced expression of cardiac-specific genes and proteins in hucMSCs. Increased phosphorylation of signal transducers and activators of transcription 3, and up-regulation of myocyte enhancer-binding factor-2c and myogenic differentiation antigen in 5-Aza-treated hucMSCs were also suppressed by U0126. Taken together, these results suggested that sustained activation of ERK by 5-Aza contributed to the induction of the differentiation of hucMSCs into cardiomyocytes in vitro.


Stem Cells Translational Medicine | 2015

Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/β-Catenin Pathway

Bin Zhang; Xiaodan Wu; Xu Zhang; Yaoxiang Sun; Yongmin Yan; Hui Shi; Yanhua Zhu; Lijun Wu; Zhaoji Pan; Wei Zhu; Hui Qian; Wenrong Xu

Human umbilical cord mesenchymal stem cells (hucMSCs) and their exosomes have been considered as potential therapeutic tools for tissue regeneration; however, the underlying mechanisms are still not well understood. In this study, we isolated and characterized the exosomes from hucMSCs (hucMSC‐Ex) and demonstrated that hucMSC‐Ex promoted the proliferation, migration, and tube formation of endothelial cells in a dose‐dependent manner. Furthermore, we demonstrated that hucMSC‐Ex promoted wound healing and angiogenesis in vivo by using a rat skin burn model. We discovered that hucMSC‐Ex promoted β‐catenin nuclear translocation and induced the increased expression of proliferating cell nuclear antigen, cyclin D3, N‐cadherin, and β‐catenin and the decreased expression of E‐cadherin. The activation of Wnt/β‐catenin is critical in the induction of angiogenesis by hucMSC‐Ex, which could be reversed by β‐catenin inhibitor ICG‐001. Wnt4 was delivered by hucMSC‐Ex, and the knockdown of Wnt4 in hucMSC‐Ex abrogated β‐catenin nuclear translocation in endothelial cells. The in vivo proangiogenic effects were also inhibited by interference of Wnt4 expression in hucMSC‐Ex. Taken together, these results suggest that hucMSC‐Ex‐mediated Wnt4 induces β‐catenin activation in endothelial cells and exerts proangiogenic effects, which could be an important mechanism for cutaneous wound healing.


Stem Cells and Development | 2011

Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury.

Yuan Chen; Hui Qian; Wei Zhu; Xu Zhang; Yongmin Yan; Shengqin Ye; Xiujuan Peng; Wei Li; Wenrong Xu

Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are particularly attractive cells for cellular and gene therapy in acute kidney injury (AKI). Adenovirus-mediated gene therapy has been limited by immune reaction and target genes selection. However, in the present study, we investigated the therapeutic effects of hepatocyte growth factor modified hucMSCs (HGF-hucMSCs) in ischemia/reperfusion-induced AKI rat models. In vivo animal models were generated by subjecting to 60 min of bilateral renal injury by clamping the renal pedicles and then introduced HGF-hucMSCs via the left carotid artery. Our results revealed that serum creatinine and urea nitrogen levels decreased to the baseline more quickly in HGF-hucMSCs-treated group than that in hucMSCs- or green fluorescent protein-hucMSCs-treated groups at 72 h after injury. The percent of proliferating cell nuclear antigen-positive cells in HGF-hucMSCs-treated group was higher than that in the hucMSCs or green fluorescent protein-hucMSCs-treated groups. Moreover, injured renal tissues treated with HGF-hucMSCs also exhibited less hyperemia and renal tubule cast during the recovery process. Immunohistochemistry and living body imaging confirmed that HGF-hucMSCs localize to areas of renal injury. Real-time polymerase chain reaction result showed that HGF-hucMSCs also inhibited caspase-3 and interleukin-1β mRNA expression in injured renal tissues. Western blot also showed HGF-hucMSCs-treated groups had lower expression of interleukin-1β. Terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate (dUTP) nick end labeling method indicated that HGF-hucMSCs-treated group had the least apoptosis cells. In conclusion, our findings suggest that HGF modification promotes the amelioration of ischemia/reperfusion-induced rat renal injury via antiapoptotic and antiinflammatory mechanisms; thus, providing a novel therapeutic application for hucMSCs in AKI.


Cell Cycle | 2015

Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer

Runbi Ji; Bin Zhang; Xu Zhang; Jianguo Xue; Xiao Yuan; Yongmin Yan; Mei Wang; Wei Zhu; Hui Qian; Wenrong Xu

Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

Collaboration


Dive into the Yongmin Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge