Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongnam Song is active.

Publication


Featured researches published by Yongnam Song.


Journal of Orthopaedic Research | 2009

The proximal hip joint capsule and the zona orbicularis contribute to hip joint stability in distraction

Hiroshi Ito; Yongnam Song; Derek P. Lindsey; Marc R. Safran; Nicholas J. Giori

The structure and function of the proximal hip joint capsule and the zona orbicularis are poorly understood. We hypothesized that the zona orbicularis is an important contributor to hip stability in distraction. In seven cadaveric hip specimens from seven male donors we distracted the femur from the acetabulum in a direction parallel to the femoral shaft with the hip in the neutral position. Eight sequential conditions were assessed: (1) intact specimen (muscle and skin removed), (2) capsule vented, (3) incised iliofemoral ligament, (4) circumferentially incised capsule, (5) partially resected capsule (distal to the zona orbicularis), (6) completely resected capsule, (7) radially incised labrum, and (8) completely resected labrum. The reduction of the distraction load was greatest between the partially resected capsule phase and completely resected capsule phase at 1, 3, and 5 mm joint distraction (p = 0.018). The proximal to middle part of the capsule, which includes the zona orbicularis, appears grossly and biomechanically to act as a locking ring wrapping around the neck of the femur and is a key structure for hip stability in distraction.


Journal of Biomechanics | 2012

Articular cartilage friction increases in hip joints after the removal of acetabular labrum

Yongnam Song; Hiroshi Ito; Lampros Kourtis; Marc R. Safran; Dennis R. Carter; Nicholas J. Giori

The acetabular labrum is believed to have a sealing function. However, a torn labrum may not effectively prevent joint fluid from escaping a compressed joint, resulting in impaired lubrication. We aimed to understand the role of the acetabular labrum in maintaining a low friction environment in the hip joint. We did this by measuring the resistance to rotation (RTR) of the hip, which reflects the friction of the articular cartilage surface, following focal and complete labrectomy. Five cadaveric hips without evidence of osteoarthritis and impingement were tested. We measured resistance to rotation of the hip joint during 0.5, 1, 2, and 3 times body weight (BW) cyclic loading in the intact hip, and after focal and complete labrectomy. Resistance to rotation, which reflects articular cartilage friction in an intact hip was significantly increased following focal labrectomy at 1-3 BW loading, and following complete labrectomy at all load levels. The acetabular labrum appears to maintain a low friction environment, possibly by sealing the joint from fluid exudation. Even focal labrectomy may result in increased joint friction, a condition that may be detrimental to articular cartilage and lead to osteoarthritis.


Journal of Biomechanics | 2011

Changes in articular cartilage mechanics with meniscectomy: A novel image-based modeling approach and comparison to patterns of OA

Joseph M. Haemer; Yongnam Song; Dennis R. Carter; Nicholas J. Giori

Meniscectomy is a significant risk factor for osteoarthritis, involving altered cell synthesis, central fibrillation, and peripheral osteophyte formation. Though changes in articular cartilage contact pressure are known, changes in tissue-level mechanical parameters within articular cartilage are not well understood. Recent imaging research has revealed the effects of meniscectomy on the time-dependent deformation of physiologically loaded articular cartilage. To determine tissue-level cartilage mechanics that underlie observed deformation, a novel finite element modeling approach using imaging data and a contacting indenter boundary condition was developed. The indenter method reproduces observed articular surface deformation and avoids assumptions about tangential stretching. Comparison of results from an indenter model with a traditional femur-tibia model verified the method, giving errors in displacement, solid and fluid stress, and strain below 1% (RMS) and 7% (max.) of the absolute maximum of the parameters of interest. Indenter finite element models using real joint image data showed increased fluid pressure, fluid exudation, loss of fluid load support, and increased tensile strains centrally on the tibial condyle after meniscectomy-patterns corresponding to clinical observations of cartilage matrix damage and fibrillation. Peripherally there was decreased consolidation, which corresponds to reduced contact and fluid pressure in this analysis. Clinically, these areas have exhibited advance of the subchondral growth front, biological destruction of the cartilage matrix, cartilage thinning, and eventual replacement of the cartilage via endochondral ossification. Characterizing the changes in cartilage mechanics with meniscectomy and correspondence with observed tissue-level effects may help elucidate the etiology of joint-level degradation seen in osteoarthritis.


Journal of Biomechanical Engineering-transactions of The Asme | 2014

Cartilage Nominal Strain Correlates With Shear Modulus and Glycosaminoglycans Content in Meniscectomized Joints

Yongnam Song; Dennis R. Carter; Nicholas J. Giori

Postmeniscectomy osteoarthritis (OA) is hypothesized to be the consequence of abnormal mechanical conditions, but the relationship between postsurgical alterations in articular cartilage strain and in vivo biomechanical/biochemical changes in articular cartilage is unclear. We hypothesized that spatial variations in cartilage nominal strain (percentile thickness change) would correlate with previously reported in vivo articular cartilage property changes following meniscectomy. Cadevaric sheep knees were loaded in cyclic compression which was previously developed to mimic normal sheep gait, while a 4.7 T magnetic resonance imaging (MRI) imaged the whole joint. 3D cartilage strain maps were compared with in vivo sheep studies that described postmeniscectomy changes in shear modulus, phase lag, proteoglycan content and collagen organization/content in the articular cartilage. The area of articular cartilage experiencing high (overloaded) and low (underloaded) strain was significantly increased in the meniscectomized tibial compartment by 10% and 25%, respectively, while no significant changes were found in the nonmeniscectomized compartment. The overloaded and underloaded regions of articular cartilage in our in vitro specimens correlated with regions of in vivo shear modulus reduction. Glycosaminoglycans (GAG) content only increased at the underloaded articular cartilage but decreased at the overloaded articular cartilage. No significant correlation was found in phase lag and collagen organization/content changes with the strain variation. Comparisons between postsurgical nominal strain and in vivo cartilage property changes suggest that both overloading and underloading after meniscectomy may directly damage the cartilage matrix stiffness (shear modulus). Disruption of superficial cartilage by overloading might be responsible for the proteoglycan (GAG) loss in the early stage of postmeniscectomy OA.


Journal of Biomechanics | 2013

Physeal cartilage exhibits rapid consolidation and recovery in intact knees that are physiologically loaded

Yongnam Song; Dokwan Lee; Choongsoo S. Shin; Dennis R. Carter; Nicholas J. Giori

The growth plate (physis) is responsible for long bone growth through endochondral ossification, a process which can be mechanically modulated. However, our understanding of the detailed mechanical behavior of physeal cartilage occurring in vivo is limited. In this study, we aimed to quantify the time-dependent deformational behavior of physeal cartilage in intact knees under physiologically realistic dynamic loading, and compare physeal cartilage deformation with articular cartilage deformation. A 4.7 T MRI scanner continuously scanned a knee joint in the sagittal plane through the central load-bearing region of the medial compartment every 2.5 min while a realistic cyclic loading was applied. A custom auto-segmentation program was developed to delineate complex physeal cartilage boundaries. Physeal volume changes at each time step were calculated. The new auto-segmentation was found to be reproducible with COV of the volume measurements being less than 0.5%. Time-constants of physeal cartilage consolidation (1.31±0.74 min) and recovery (1.63±0.70 min) were significantly smaller than the values (5.53±1.78/17.71±13.88 min for consolidation/recovery) in articular cartilage (P<0.05). The rapid consolidation and recovery of physeal cartilage may due to a relatively free metaphyseal fluid boundary which would allow rapid fluid exchange with the adjacent cancellous bone. This may impair the generation of hydrostatic pressure in the cartilage matrix when the physis is under chronic compressive loading, and may be related to the premature ossification of the growth plate under such conditions. Research on the growth plate fluid exchange may provide a more comprehensive understanding of mechanisms and disorders of long bone growth.


Gait & Posture | 2018

Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing

Jin-Kyu Lee; Yongnam Song; Choongsoo S. Shin

BACKGROUND During landing, the ankle angle at initial contact (IC) exhibits relatively wide individual variation compared to the knee and hip angles. However, little is known about the effect of different IC ankle angles on energy dissipation. RESEARCH QUESTION The purpose of this study was to investigate the relationship between individual ankle angles at IC and energy dissipation in the lower extremity joints. METHODS Twenty-seven adults performed single-leg landings from a 0.3-m height. Kinetics and kinematics of the lower extremity joints were measured. The relationship between ankle angles at IC and negative work, range of motion, the time to peak ground reaction force, and peak loading rate were analyzed. RESULTS The ankle angle at IC was positively correlated with ankle negative work (r = 0.80, R2 = 0.64, p < 0.001) and the contribution of the ankle to total (ankle, knee and hip joint) negative work (r = 0.84, R2 = 0.70, p < 0.001), but the ankle angle was negatively correlated with hip negative work (r = -0.46, R2 = 0.21, p = 0.01) and the contribution of the hip to total negative work (r = -0.61, R2 = 0.37, p < 0.001). The knee negative work and the contribution of the knee to total negative work were not correlated with the ankle angle at IC. The ankle angle at IC was positively correlated with total negative work (r = 0.50, R2 = 0.25, p < 0.01) and negatively correlated with the peak loading rate (r = -0.76, R2 = 0.57, p < 0.001). SIGNIFICANCE These results indicated that landing mechanics changed as the ankle angle at IC increased, such that the ankle energy dissipation increased and redistributed the energy dissipation in the ankle and hip joints. Further, these results suggest that increased ankle energy dissipation with a higher IC plantar flexion angle may be a potential landing technique for reducing the risk of injury to the anterior cruciate ligament and hip musculature.


International Journal of Precision Engineering and Manufacturing | 2013

A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks

Yong-Jin Yoon; Woo-Tae Park; King Ho Holden Li; Yu Qi Ng; Yongnam Song


International Journal of Precision Engineering and Manufacturing | 2017

Quantitative measurements of muscle degeneration in volumetric shoulder muscle models

Ki Taek Hong; Dokwan Lee; Choongsoo S. Shin; Jung Ah Choi; Yongnam Song


International Journal of Precision Engineering and Manufacturing | 2013

Natural orifice translumenal endoscopic surgery: Current status and future technical development

Yongnam Song; Y. S. Kim; Choongsoo S. Shin; Daehie Hong


International Journal of Precision Engineering and Manufacturing | 2016

A novel endoscopic surgical device for gastric volume reduction bariatric surgery

Y. S. Kim; Hyuk Soon Choi; Kyungnam Kim; Byoung Gon Kim; Bora Keum; Daehie Hong; Hoon Jai Chun; Yongnam Song

Collaboration


Dive into the Yongnam Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge