Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongshu Zhang is active.

Publication


Featured researches published by Yongshu Zhang.


Journal of Bacteriology | 2008

Streptococcal Antagonism in Oral Biofilms: Streptococcus sanguinis and Streptococcus gordonii Interference with Streptococcus mutans

Jens Kreth; Yongshu Zhang; Mark C. Herzberg

Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant interspecies antagonism, we studied three well-characterized and closely related oral species, Streptococcus gordonii, Streptococcus sanguinis, and cariogenic Streptococcus mutans. S. sanguinis and S. gordonii used oxygen availability and the differential production of hydrogen peroxide (H(2)O(2)) to compete effectively against S. mutans. Interspecies antagonism was influenced by glucose with reduced production of H(2)O(2). Furthermore, aerobic conditions stimulated the competence system and the expression of the bacteriocin mutacin IV of S. mutans, as well as the H(2)O(2)-dependent release of heterologous DNA from mixed cultures of S. sanguinis and S. gordonii. These data provide new insights into ecological factors that determine the outcome of competition between pioneer colonizing oral streptococci and the survival mechanisms of S. mutans in the oral biofilm.


Journal of Bacteriology | 2009

Characterization of Hydrogen Peroxide-Induced DNA Release by Streptococcus sanguinis and Streptococcus gordonii

Jens Kreth; Hung Vu; Yongshu Zhang; Mark C. Herzberg

Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H(2)O(2)). Surprisingly, S. sanguinis and S. gordonii cell integrity appears unaffected by conditions that cause autolysis in other eDNA-producing bacteria. Exogenous H(2)O(2) causes release of DNA from S. sanguinis and S. gordonii but does not result in obvious lysis of cells. Under DNA-releasing conditions, cell walls appear functionally intact and ribosomes are retained over time. During DNA release, intracellular RNA and ATP are not coreleased. Hence, the release mechanism appears to be highly specific for DNA. Release of DNA without detectable autolysis is suggested to be an adaptation to the competitive oral biofilm environment, where autolysis could create open spaces for competitors to invade. Since eDNA promotes cell-to-cell adhesion, release appears to support oral biofilm formation and facilitates exchange of genetic material among competent strains.


Journal of Bacteriology | 2004

Involvement of Streptococcus gordonii Beta-Glucoside Metabolism Systems in Adhesion, Biofilm Formation, and In Vivo Gene Expression

Ali O. Kiliç; Lin Tao; Yongshu Zhang; Yu Lei; Ali Khammanivong; Mark C. Herzberg

Streptococcus gordonii genes involved in beta-glucoside metabolism are induced in vivo on infected heart valves during experimental endocarditis and in vitro during biofilm formation on saliva-coated hydroxyapatite (sHA). To determine the roles of beta-glucoside metabolism systems in biofilm formation, the loci of these induced genes were analyzed. To confirm the function of genes in each locus, strains were constructed with gene inactivation, deletion, and/or reporter gene fusions. Four novel systems responsible for beta-glucoside metabolism were identified, including three phosphoenolpyruvate-dependent phosphotransferase systems (PTS) and a binding protein-dependent sugar uptake system for metabolizing multiple sugars, including beta-glucosides. Utilization of arbutin and esculin, aryl-beta-glucosides, was defective in some mutants. Esculin and oligochitosaccharides induced genes in one of the three beta-glucoside metabolism PTS and in four other genetic loci. Mutation of genes in any of the four systems affected in vitro adhesion to sHA, biofilm formation on plastic surfaces, and/or growth rate in liquid medium. Therefore, genes associated with beta-glucoside metabolism may regulate S. gordonii in vitro adhesion, biofilm formation, growth, and in vivo colonization.


Journal of Periodontology | 2005

Oral Streptococci and Cardiovascular Disease: Searching for the Platelet Aggregation-Associated Protein Gene and Mechanisms of Streptococcus sanguis-Induced Thrombosis

Mark C. Herzberg; Angela H. Nobbs; Lin Tao; Ali O. Kiliç; Eric Beckman; Ali Khammanivong; Yongshu Zhang

BACKGROUND Pathogenic mechanisms in infective endocarditis, disseminated intravascular coagulation, and cardiovascular events involve the aggregation of platelets into thrombi. Attendant infection by oral bacteria contributes to these diseases. We have been studying how certain oral streptococci induce platelet aggregation in vitro and in vivo. Streptococcus sanguis expresses a platelet aggregation-associated protein (PAAP), which contributes little to adhesion to platelets. When specific antibodies or peptides block PAAP, S. sanguis fails to induce platelet aggregation in vitro or in vivo. METHODS We used subtractive hybridization to identify the gene encoding for PAAP. RESULTS After subtraction of strain L50 (platelet aggregation-negative), four strain 133-79 specific sequences were characterized. Sequence agg4 encoded a putative collagen-binding protein (CbpA), which was predicted to contain two PAAP collagen-like octapeptide sequences. S. sanguis CbpA- mutants were constructed and tested for induction of platelet aggregation in vitro. Platelet aggregation was substantially inhibited when compared to the wild-type using platelet-rich plasma from the principal donor, but adhesion was unaffected. Other donor platelets responded normally to the CbpA- strain, suggesting additional mechanisms of response to S. sanguis. In contrast, CshA- and methionine sulfoxide reductase-negative (MsrA-) strains neither adhered nor induced platelet aggregation. CONCLUSIONS CbpA was suggested to contribute to site 2 interactions in our two-site model of platelet aggregation in response to S. sanguis. Platelet polymorphisms were suggested to contribute to the thrombogenic potential of S. sanguis.


PLOS ONE | 2012

Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis.

Jingyuan Fan; Yongshu Zhang; Olivia N. Chuang-Smith; Kristi L. Frank; Brian D. Guenther; Marissa Kern; Patrick M. Schlievert; Mark C. Herzberg

Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5′-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P = 0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log10CFU, P = 0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE.


Journal of Bacteriology | 2007

Streptococcus gordonii Hsa Environmentally Constrains Competitive Binding by Streptococcus sanguinis to Saliva-Coated Hydroxyapatite

Angela H. Nobbs; Yongshu Zhang; Ali Khammanivong; Mark C. Herzberg

Competition between pioneer colonizing bacteria may determine polymicrobial succession during dental plaque development, but the ecological constraints are poorly understood. For example, more Streptococcus sanguinis than Streptococcus gordonii organisms are consistently isolated from the same intraoral sites, yet S. gordonii fails to be excluded and survives as a species over time. To explain this observation, we hypothesized that S. gordonii could compete with S. sanguinis to adhere to saliva-coated hydroxyapatite (sHA), an in vitro model of the tooth surface. Both species bound similarly to sHA, yet 10- to 50-fold excess S. gordonii DL1 reduced binding of S. sanguinis SK36 by 85 to >95%. S. sanguinis, by contrast, did not significantly compete with S. gordonii to adhere. S. gordonii competed with S. sanguinis more effectively than other species of oral streptococci and depended upon the salivary film on HA. Next, putative S. gordonii adhesins were analyzed for contributions to interspecies competitive binding. Like wild-type S. gordonii, isogenic mutants with mutations in antigen I/II polypeptides (sspAB), amylase-binding proteins (abpAB), and Csh adhesins (cshAB) competed effectively against S. sanguinis. By contrast, an hsa-deficient mutant of S. gordonii showed significantly reduced binding and competitive capabilities, while these properties were restored in an hsa-complemented strain. Thus, Hsa confers a selective advantage to S. gordonii over S. sanguinis in competitive binding to sHA. Hsa expression may, therefore, serve as an environmental constraint against S. sanguinis, enabling S. gordonii to persist within the oral cavity, despite the greater natural prevalence of S. sanguinis in plaque and saliva.


Infection and Immunity | 2005

Inactivation of Streptococcus gordonii SspAB alters expression of multiple adhesin genes.

Yongshu Zhang; Yu Lei; Angela H. Nobbs; Ali Khammanivong; Mark C. Herzberg

ABSTRACT SspA and SspB (antigen I/II family proteins) can bind Streptococcusgordonii to other oral bacteria and also to salivary agglutinin glycoprotein, a constituent of the salivary film or pellicle that coats the tooth. To learn if SspA and SspB are essential for adhesion and initial biofilm formation on teeth, S. gordonii DL1 was incubated with saliva-coated hydroxyapatite (sHA) for 2 h in Todd-Hewitt broth with 20% saliva to develop initial biofilms. Sessile cells attached to sHA, surrounding planktonic cells, and free-growing cells were recovered separately. Free-growing cells expressed more sspA-specific mRNA and sspB-specific mRNA than sessile cells. Free-growing cells expressed the same levels of sspA and sspB as planktonic cells. Surprisingly, an SspA− SspB− mutant strain showed 2.2-fold greater biofilm formation on sHA than wild-type S. gordonii DL1. To explain this observation, we tested the hypothesis that inactivation of sspA and sspB genes altered the expression of other adhesin genes during initial biofilm formation in vitro. When compared to wild-type cells, expression of scaA and abpB was significantly up-regulated in the SspA− SspB− strain in sessile, planktonic, and free-growing cells. Consistent with this finding, ScaA antigen was also overexpressed in planktonic and free-growing SspA− SspB− cells compared to the wild type. SspA/B adhesins, therefore, were strongly suggested to be involved in the regulation of multiple adhesin genes.


Infection and Immunity | 2004

Identification of a Novel Two-Component System in Streptococcus gordonii V288 Involved in Biofilm Formation

Yongshu Zhang; Yu Lei; Ali Khammanivong; Mark C. Herzberg

ABSTRACT Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10% saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.


Microbiology | 2009

The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis

Yongshu Zhang; Marvin Whiteley; Jens Kreth; Yu Lei; Ali Khammanivong; Jamie N. Evavold; Jingyuan Fan; Mark C. Herzberg

The putative two-component system BfrAB is involved in Streptococcus gordonii biofilm development. Here, we provide evidence that BfrAB regulates the expression of bfrCD and bfrEFG, which encode two ATP-binding cassette (ABC) transporters, and bfrH, which encodes a CAAX amino-terminal protease family protein. BfrC and BfrE are ATP-binding proteins, and BfrD, BfrF and BfrG are homologous membrane-spanning polypeptides. Similarly, BfrABss, the BfrAB homologous system in Streptococcus sanguinis, controls the expression of two bfrCD-homologous operons (bfrCDss and bfrXYss), a bfrH-homologous gene (bfrH1ss) and another CAAX amino-terminal protease family protein gene (bfrH2ss). Furthermore, we demonstrate that the purified BfrA DNA-binding domain from S. gordonii binds to the promoter regions of bfrCD, bfrEFG, bfrH, bfrCDss, bfrXYss and bfrH1ss in vitro. Finally, we show that the BfrA DNA-binding domain recognizes a conserved DNA motif with a consensus sequence of TTTCTTTAGAAATATTTTAGAATT. These data suggest, therefore, that S. gordonii BfrAB controls biofilm formation by regulating multiple ABC-transporter systems.


Molecular Microbiology | 2011

Mechanism of adhesion maintenance by methionine sulphoxide reductase in Streptococcus gordonii.

Yu Lei; Yongshu Zhang; Brian D. Guenther; Jens Kreth; Mark C. Herzberg

Methionine sulphoxide reductase maintains adhesin function during oxidative stress. Using Streptococcus gordonii as a model, we now show the mechanistic basis of adhesin maintenance provided by MsrA. In biofilms, S. gordonii selectively expresses the msrA gene. When the wild‐type strain was grown with exogenous hydrogen peroxide (H2O2), msrA‐specific mRNA expression significantly increased, while acid production was unaffected. In the presence of H2O2, a msrA‐deletion mutant (ΔMsrA) showed a 6 h delay in lag phase growth, a 30% lower yield of H2O2, significantly greater inhibition by H2O2 on agar plates (reversed by complementation), 30% less adhesion to saliva‐coated hydroxyapatite, 87% less biofilm formation and an altered electrophoretic pattern of SspAB protein adhesins. Using mass spectrometry, methionine residues in the Met‐rich central region of SspB were shown to be oxidized by H2O2 and reduced by MsrA. In intact wild‐type cells, MsrA colocalized with a cell wall‐staining dye, and MsrA was detected in both cell wall and cytosolic fractions. To maintain normal adhesion and biofilm function of S. gordonii in response to exogenous oxidants therefore msrA is upregulated, methionine oxidation of adhesins and perhaps other proteins is reversed, and adhesion and biofilm formation is maintained.

Collaboration


Dive into the Yongshu Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Lei

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingyuan Fan

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Ali O. Kiliç

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Tao

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Eric Beckman

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge