Yongwei Dong
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongwei Dong.
Proceedings of SPIE | 2012
Olivier Godet; J. Paul; J. Y. Wei; Shuang-Nan Zhang; Jean-Luc Atteia; S. Basa; Didier Barret; A. Claret; Bertrand Cordier; J.-G. Cuby; Z. Dai; F. Daigne; J. Deng; Yongwei Dong; Diego Gotz; J. Hu; P. Mandrou; J. P. Osborne; Y. Qiu; J. Wang; Bobing Wu; C. Wu; W. Yuan
We present the SVOM mission that the Chinese National Space Agency and the French Space Agency have decided to jointly implement. SVOM has been designed to detect, characterise and quickly localise gamma-ray bursts (GRBs) and other types of high-energy transients. For this task the spacecraft will carry two widefield high-energy instruments: ECLAIRs, a hard X-ray imager, and the Gamma-Ray Monitor, a broadband spectrometer. Upon localising a transient, SVOM will quickly slew towards the source and start deep followup observations with two narrow-field telescopes: the Micro-channel X-ray Telescope in X-rays and the Visible Telescope in the visible. The nearly anti-solar pointing of SVOM combined with the fast transmission of GRB positions to the ground in less than 1 minute, will facilitate the observations of SVOM transients by the largest ground based telescopes.
Astroparticle Physics | 2016
Xiaoyuan Huang; Anna S. Lamperstorfer; Yue-Lin Sming Tsai; Ming Xu; Qiang Yuan; Jin Chang; Yongwei Dong; Bing-Liang Hu; Jun-Guang Lü; Le Wang; Bobing Wu; Shuang-Nan Zhang
HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard Chinas space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution (similar to 1% for electrons and photons and 20% for nuclei) and a large geometry factor (>3 m(2) sr for electrons and diffuse photons and > [2]m(2) sr for nuclei). In this work we discuss the capability of HERD to detect monochromatic gamma-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic gamma-ray searches at energies between similar to 10 to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD
arXiv: Instrumentation and Methods for Astrophysics | 2015
Bertrand Cordier; Jun-Jie Wei; Jean-Luc Atteia; S. Basa; A. Claret; F. Daigne; J. S. Deng; Yongwei Dong; O. Godet; A. Goldwurm; Diego Gotz; Xu-Hui Han; Alain Klotz; Cyril Lachaud; Julian P. Osborne; Yulei Qiu; S. Schanne; Bobing Wu; Jingxiu Wang; C. Wu; L. P. Xin; Bing Zhang; Shuang-Nan Zhang
We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the next decade will benefit from a number of large facilities in all wavelengths that will contribute to increase the scientific return of the mission. Finally, SVOM will operate in the era of the next generation of gravitational wave detectors, greatly contributing to searches for the electromagnetic counterparts of gravitational wave triggers at Xray and gamma-ray energies.
Astroparticle Physics | 2016
Hualin Xiao; Wojtek Hajdas; Bobing Wu; N. Produit; Tianwei Bao; T. Batsch; F. Cadoux; Junying Chai; Yongwei Dong; M. N. Kong; Siwei Kong; D. Rybka; Catherine Leluc; Lu Li; Jiangtao Liu; Xin Liu; R. Marcinkowski; Mercedes Paniccia; M. Pohl; D. Rapin; Haoli Shi; Liming Song; Jianchao Sun; Jacek Szabelski; Ruijie Wang; X. Wen; Hanhui Xu; Laiyu Zhang; Li Zhang; Shuang-Nan Zhang
Abstract In spite of extensive observations and numerous theoretical studies in the past decades several key questions related with Gamma-Ray Bursts (GRB) emission mechanisms are still to be answered. Precise detection of the GRB polarization carried out by dedicated instruments can provide new data and be an ultimate tool to unveil their real nature. A novel space-borne Compton polarimeter POLAR onboard the Chinese space station TG2 is designed to measure linear polarization of gamma-rays arriving from GRB prompt emissions. POLAR uses plastics scintillator bars (PS) as gamma-ray detectors and multi-anode photomultipliers (MAPMTs) for readout of the scintillation light. Inherent properties of such detection systems are crosstalk and non-uniformity. The crosstalk smears recorded energy over multiple channels making both non-uniformity corrections and energy calibration more difficult. Rigorous extraction of polarization observables requires to take such effects properly into account. We studied influence of the crosstalk on energy depositions during laboratory measurements with X-ray beams. A relation between genuine and recorded energy was deduced using an introduced model of data analysis. It postulates that both the crosstalk and non-uniformities can be described with a single matrix obtained in calibrations with mono-energetic X- and gamma-rays. Necessary corrections are introduced using matrix based equations allowing for proper evaluation of the measured GRB spectra. Validity of the method was established during dedicated experimental tests. The same approach can be also applied in space utilizing POLAR internal calibration sources. The introduced model is general and with some adjustments well suitable for data analysis from other MAPMT-based instruments.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018
N. Produit; Tianwei Bao; T. Batsch; T. Bernasconi; I. Britvich; F. Cadoux; I. Cernuda; Junying Chai; Yongwei Dong; N. Gauvin; Wojtek Hajdas; Merlin Kole; M. N. Kong; R. Kramert; Li Li; Jing Liu; X. Liu; R. Marcinkowski; S. Orsi; M. Pohl; D. Rapin; D. Rybka; A. Rutczynska; Haoli Shi; P. Socha; Jianchao Sun; Longlong Song; Jacek Szabelski; I. Traseira; Hualin Xiao
Abstract The POLAR detector is a space based Gamma Ray Burst (GRB) polarimeter with a wide field of view, which covers almost half the sky. The instrument uses Compton scattering of gamma rays on a plastic scintillator hodoscope to measure the polarization of the incoming photons. The instrument has been successfully launched on board of the Chinese space laboratory Tiangong 2 on September 15, 2016. The construction of the instrument components is described in this article. Details are provided on problems encountered during the construction phase and their solutions. Initial performance of the instrument in orbit is as expected from ground tests and Monte Carlo simulation.
Proceedings of SPIE | 2014
Yongwei Dong
The X-ray Timing and Polarization (XTP) satellite, planned for launch in ~2020, is dedicated to the study of 1- singularity (Black Hole), 2-stars (normal neutron star and magnetar) and 3-extremes (the physics under extreme gravity, density and magnetism). With an effective area of ~1 m2 and a combination of various types of X-ray telescopes, XTP is expected to make the most sensitive temporal and polarization observations with good energy resolution in 1-30 keV. XTP will open a new window using its powerful capability of polarization observations; its minimum detectable polarization will be 3% (1 mCrab, 1e6 s).
Proceedings of SPIE | 2014
Min Xu; G. M. Chen; Yongwei Dong; J. G. Lu; Z. Quan; Lihong V. Wang; Z. G. Wang; Bobing Wu; Shuangnan Zhang
The High Energy cosmic-Radiation Detection (HERD) facility onboard Chinas Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measurements (energy resolution: 1% for electrons and gammarays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV); 2) its granularity for particle identification (electron/proton separation power better than 10-5); 3) the homogenous geometry for detecting particles arriving from every unblocked direction for large effective geometrical factor (<3 m2sr for electron and diffuse gammarays, >2 m2sr for cosmic ray nuclei); 4) expected observational results such as gamma-ray line spectrum from dark matter annihilation and spectrum measurement of various cosmic ray chemical components.
Proceedings of SPIE | 2014
S. Orsi; F. Cadoux; Catherine Leluc; Mercedes Paniccia; M. Pohl; D. Rapin; N. Gauvin; N. Produit; Tianwei Bao; Junying Chai; Yongwei Dong; M. N. Kong; Li Lu; Jiangtao Liu; Xin Liu; Haoli Shi; Jianchao Sun; Ruijie Wang; X. Wen; Bobing Wu; Hualin Xiao; Hanhui Xu; Li Zhang; Laiyu Zhang; Shuang-Nan Zhang; Yongjie Zhang; Ilia Britvich; Wojtek Hajdas; Radoslaw Marcinkowski; D. Rybka
POLAR is a joint European-Chinese experiment aimed at a precise measurement of hard X-ray polarization (50-500 keV) of the prompt emission of Gamma-Ray Bursts. The main aim is a better understanding of the geometry of astrophysical sources and of the X-ray emission mechanisms. POLAR is a compact Compton polarimeter characterized by a large modulation factor, effective area, and field of view. It consists of 1600 low-Z plastic scintillator bars read out by 25 at-panel multi-anode photomultipliers. The incoming X-rays undergo Compton scattering in the bars and produce a modulation pattern; experiments with polarized synchrotron radiation and GEANT4 Monte Carlo simulations have shown that the polarization degree and angle can be retrieved from this pattern with the accuracy necessary for identifying the GRB mechanism. The flight model of POLAR is currently under construction in Geneva. The POLAR instrument will be placed onboard the Chinese spacelab TG-2, scheduled for launch in low Earth orbit in 2015. The main milestones of the space qualification campaign will be described in the paper.
Experimental Astronomy | 2012
D.Q. Zhao; Bertrand Cordier; Patrick Sizun; Bobing Wu; Yongwei Dong; S. Schanne; Liming Song; Jiangtao Liu
SVOM (Space-based multi-band astronomical Variable Object Monitor) is a future Chinese-French satellite mission which is dedicated to Gamma-Ray Burst (GRB) studies. Its anti-solar pointing strategy makes the Earth cross the field of view of its payload every orbit. In this paper, we present the variations of the gamma-ray background of the two high energy instruments aboard SVOM, the Gamma-Ray Monitor (GRM) and ECLAIRs, as a function of the Earth position. We conclude with an estimate of the Earth influence on their sensitivity and their GRB detection capability.
Astroparticle Physics | 2018
Hualin Xiao; Wojtek Hajdas; Bobing Wu; N. Produit; Tianwei Bao; T. Bernasconi; F. Cadoux; Yongwei Dong; Ken Egli; N. Gauvin; Merlin Kole; Reinhold Kramert; Siwei Kong; Lu Li; Zhengheng Li; Jiangtao Liu; Xin Liu; Radoslaw Marcinkowski; D. Rybka; M. Pohl; Haoli Shi; Liming Song; Jianchao Sun; Shaolin Xiong; Jacek Szabelski; Patryk Socha; Ruijie Wang; X. Wen; X. Wu; Laiyu Zhang
POLAR is a compact wide-field space-borne detector for precise measurements of the linear polarisation of hard X-rays emitted from gamma-ray burst and solar flares in the energy range of 50 keV to 500 keV. It consists of a 40 x 40 array of plastic scintillator bars used as a detection material. POLAR was launched into a low Earth orbit on-board the Chinese space-lab TG-2 on September 15, 2016. To achieve high accuracies in polarisation measurements it is essential to perform a precise energy calibration both before and during the flight. Such calibrations are performed with four low activity Na-22 radioactive sources placed inside the instrument. Energy conversion factors are related to Compton edge positions from the collinear annihilation photons from the sources. This paper presents the main principles of the in-flight calibration, describes studies of the method based on Monte Carlo simulations and its laboratory verification, and provides some observation results based on the in-flight data analysis