Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongwoo Jang is active.

Publication


Featured researches published by Yongwoo Jang.


Nature Neuroscience | 2012

The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons

Hawon Cho; Young Duk Yang; Jesun Lee; Byeongjoon Lee; Tahnbee Kim; Yongwoo Jang; Seung Keun Back; Heung Sik Na; Brian D. Harfe; Fan Wang; Ramin Raouf; John N. Wood; Uhtaek Oh

Nociceptors are a subset of small primary afferent neurons that respond to noxious chemical, thermal and mechanical stimuli. Ion channels in nociceptors respond differently to noxious stimuli and generate electrical signals in different ways. Anoctamin 1 (ANO1 also known as TMEM16A) is a Ca2+-activated chloride channel that is essential for numerous physiological functions. We found that ANO1 was activated by temperatures over 44 °C with steep heat sensitivity. ANO1 was expressed in small sensory neurons and was highly colocalized with nociceptor markers, which suggests that it may be involved in nociception. Application of heat ramps to dorsal root ganglion (DRG) neurons elicited robust ANO1-dependent depolarization. Furthermore, knockdown or deletion of ANO1 in DRG neurons substantially reduced nociceptive behavior in thermal pain models. These results indicate that ANO1 is a heat sensor that detects nociceptive thermal stimuli in sensory neurons and possibly mediates nociception.


European Journal of Neuroscience | 2007

Hydroxy‐α‐sanshool activates TRPV1 and TRPA1 in sensory neurons

Jae Yeon Koo; Yongwoo Jang; Hawon Cho; Chang-Hun Lee; Kyoung Hwa Jang; Yong Ha Chang; Jongheon Shin; Uhtaek Oh

Sanshools are major active ingredients of Zanthoxylum piperitum and are used as food additives in East Asia. Sanshools cause irritant, tingling and sometimes paresthetic sensations on the tongue. However, the molecular mechanism underlying the pungent or tingling sensation induced by sanshools is not known. Because many transient receptor potential (TRP) channels are responsible for the sensations induced by various spices and food additives, we expressed 17 TRP channels in human embryonic kidney (HEK) cells and investigated their activation by hydroxy‐α‐sanshool (HαSS) or hydroxy‐β‐sanshool (HβSS) isolated from Zanthoxylum piperitum. It was found that HαSS, but not HβSS, depolarized sensory neurons with concomitant firing of action potentials and evoked inward currents. Among 17 TRP channels expressed in HEK cells, HαSS caused Ca2+ influx in cells transfected with TRPV1 or TRPA1, and evoked robust inward currents in cells transfected with TRPV1 or TRPA1. In primary cultured sensory neurons, HαSS induced inward currents and Ca2+ influx in a capsazepine‐dependent manner. Moreover, HαSS‐induced currents and Ca2+ influx were greatly diminished in TRPV1–/– mice. HαSS evoked licking behavior when injected into a single hind paw of wild‐type mice, but this was much reduced in TRPV1‐deficient mice. These results indicate that TRPV1 and TRPA1 are molecular targets of HαSS in sensory neurons. We conclude that the activations of TRPV1 and TRPA1 by HαSS explain its unique pungent, tingling sensation.


Archives of Pharmacal Research | 2012

Quantitative analysis of TRP channel genes in mouse organs

Yongwoo Jang; Yunjong Lee; Sung Min Kim; Young Duk Yang; Jooyoung Jung; Uhtaek Oh

The transient receptor potential (TRP) channel superfamily is a set of channel genes that mediate numerous physiological functions such as sensing irritants or detecting temperature changes. Despite their functions, expressional information on TRP channels in various organs is largely elusive. Therefore, we conducted a systematic quantitative comparison of each mRNA expression level of 22 mouse TRP channels in various organs. As a result, we found that average levels of TRP channel transcripts were very low reaching ∼3% of the GAPDH transcript level. Among 22 TRP channels, TRPC1 and TRPM7 were most abundant in the majority of organs. In contrast, TRPV3, TRPV5, TRPV6, TRPC7, TRPM1, and TRPM5 elicited very low message profiles throughout the major organs. Consistent with their functions as molecular sensors for irritants and temperature changes, TRPV1, TRPM8 and TRPA1 showed exclusive expression in sensory ganglia. TRPC3 and TRPM3 were abundant in the sensory ganglia and brain. High levels of transcripts of TRPV2, TRPC6, TRPM4, and TRPM6 were observed in the lung. In addition, channel transcript levels were very low except TRPM7 in the liver. In summary, the expression profile of TRP channels in major tissues provides insight to their physiological functions and therefore application to new drug development.


Cell Calcium | 2010

TRPM8 mediates cold and menthol allergies associated with mast cell activation.

Yeongyo Cho; Yongwoo Jang; Young Duk Yang; Chang-Hun Lee; Yunjong Lee; Uhtaek Oh

Exposure to low temperatures often causes allergic responses or urticaria. Similarly, menthol, a common food additive is also known to cause urticaria, asthma, and rhinitis. However, despite the obvious clinical implications, the molecular mechanisms responsible for inducing allergic responses to low temperatures and menthol have not been determined. Because a non-selective cation channel, transient receptor potential subtype M8 (TRPM8) is activated by cold and menthol, we hypothesized that this channel mediates cold- and menthol-induced histamine release in mast cells. Here, we report that TRPM8 is expressed in the basophilic leukemia mast cell line, RBL-2H3, and that exposure to menthol or low temperatures induced Ca(2+) influx in RBL-2H3 cells, which was reversed by a TRPM8 blocker. Furthermore, menthol, a TRPM8 agonist, induced the dose-dependent release of histamine from RBL-2H3 cells. When TRPM8 transcripts were reduced by siRNA (small interfering RNA), menthol- and cold-induced Ca(2+) influx and histamine release were significantly reduced. In addition, subcutaneous injection of menthol evoked scratching, a typical histamine-induced response which was reversed by a TRPM8 blocker. Thus, our findings indicate that TRPM8 mediates the menthol- and cold-induced allergic responses of mast cells, and suggest that TRPM8 antagonists be viewed as potential treatments for cold- and menthol-induced allergies.


Journal of Biological Chemistry | 2012

Axonal Neuropathy-associated TRPV4 Regulates Neurotrophic Factor-derived Axonal Growth

Yongwoo Jang; Jooyoung Jung; Hyungsup Kim; J. H. Oh; Ji Hyun Jeon; Saewoon Jung; Kyung-Tai Kim; Hawon Cho; Dong-Jin Yang; Sung Min Kim; In-Beom Kim; Mi-Ryoung Song; Uhtaek Oh

Background: Because genetic linkage studies identified mutations in TRPV4 in patients with peripheral neuropathies, the function of TRPV4 in peripheral neurons is questioned. Results: TRPV4 was found to promote neurotrophic factor-driven neuritogenesis. Conclusion: TRPV4 mediates neurotrophic factor-driven neuritogenesis in peripheral neurons. Significance: This explains molecular mechanisms underlying neuritogenesis and maintenance of peripheral nerves. Spinal muscular atrophy and hereditary motor and sensory neuropathies are characterized by muscle weakness and atrophy caused by the degenerations of peripheral motor and sensory nerves. Recent advances in genetics have resulted in the identification of missense mutations in TRPV4 in patients with these hereditary neuropathies. Neurodegeneration caused by Ca2+ overload due to the gain-of-function mutation of TRPV4 was suggested as the molecular mechanism for the neuropathies. Despite the importance of TRPV4 mutations in causing neuropathies, the precise role of TRPV4 in the sensory/motor neurons is unknown. Here, we report that TRPV4 mediates neurotrophic factor-derived neuritogenesis in developing peripheral neurons. TRPV4 was found to be highly expressed in sensory and spinal motor neurons in early development as well as in the adult, and the overexpression or chemical activation of TRPV4 was found to promote neuritogenesis in sensory neurons as well as PC12 cells, whereas its knockdown and pharmacologic inhibition had the opposite effect. More importantly, nerve growth factor or cAMP treatment up-regulated the expression of phospholipase A2 and TRPV4. Neurotrophic factor-derived neuritogenesis appears to be regulated by the phospholipase A2-mediated TRPV4 pathway. These findings show that TRPV4 mediates neurotrophic factor-induced neuritogenesis in developing peripheral nerves. Because neurotrophic factors are essential for the maintenance of peripheral nerves, these findings suggest that aberrant TRPV4 activity may lead to some types of pathology of sensory and motor nerves.


Journal of Pharmacology and Experimental Therapeutics | 2011

Kaempferol Attenuates 4-Hydroxynonenal-Induced Apoptosis in PC12 cells by Directly Inhibiting NADPH Oxidase

Yongwoo Jang; J. Kim; Shim J; Byun S; Oak Mh; Ki Won Lee; Hyo-Suk Lee

Kaempferol, a natural flavonoid isolated from various plant sources, has been identified as a potential neuroprotectant. In this study, we investigated the protective effect of kaempferol against 4-hydroxynonenal (HNE)-induced apoptosis in PC12 rat pheochromocytoma cells. Kaempferol inhibited 4-HNE-mediated apoptosis, characterized by nuclear condensation, down-regulation of antiapoptotic protein Bcl-2, and activation of proapoptotic caspase-3. Kaempferol inhibited 4-HNE-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). More importantly, kaempferol directly bound p47phox, a cytosolic subunit of NADPH oxidase (NOX), and significantly inhibited 4-HNE-induced activation of NOX. The antiapoptotic effects of kaempferol were replicated by the NOX inhibitor apocynin, suggesting that NOX is an important enzyme in its effects. Our results suggest that kaempferol attenuates 4-HNE-induced activation of JNK and apoptosis by binding p47phox of NOX and potently inhibiting activation of the NOX-JNK signaling pathway in neuron-like cells. Altogether, these results suggest that kaempferol may be a potent prophylactic against NOX-mediated neurodegeneration.


Cell Calcium | 2014

Anoctamin 1 in secretory epithelia.

Yongwoo Jang; Uhtaek Oh

Fluid and electrolyte releasing from secretory epithelia are elaborately regulated by orchestrated activity of ion channels. The activity of chloride channel at the apical membrane decides on the direction and the rate of secretory fluid and electrolyte. Chloride-dependent secretion is conventionally associated with intracellular increases in two second messengers, cAMP and Ca(2+), responding to luminal purinergic and basolateral adrenergic or cholinergic stimulation. While it is broadly regarded that cAMP-dependent Cl(-) secretion is regulated by cystic fibrosis transmembrane conductance regulator (CFTR), Ca(2+)-activated Cl(-) channel (CaCC) had been veiled for quite some time. Now, Anoctamin 1 (ANO1 or TMEM16A) confers Ca(2+)-activated Cl(-) currents. Ano 1 and its paralogs have been actively investigated for multiple functions underlying Ca(2+)-activated Cl(-) efflux and fluid secretion in a variety of secretory epithelial cells. In this review, we will discuss recent advances in the secretory function and signaling of ANO1 in the secretory epithelia, such as airways, intestines, and salivary glands.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Anoctamin 1 (TMEM16A) is essential for testosterone-induced prostate hyperplasia

Joo Young Cha; Jungwon Wee; Jooyoung Jung; Yongwoo Jang; Byeongjun Lee; Gyu-Sang Hong; Beom Chul Chang; Yoon-La Choi; Young Kee Shin; Hye-Young Min; Ho-Young Lee; Tae-Young Na; Mi-Ock Lee; Uhtaek Oh

Significance Benign prostatic hyperplasia (BPH) is characterized by an enlargement of the prostate gland, a common disease in elderly men. Excessive testosterone is considered to cause BPH. However, its etiologic mechanisms are elusive. We found that ANO1, a Ca2+-activated Cl− channel, is essential for the testosterone-induced BPH. ANO1 was highly expressed in dihydrotestosterone (DHT)-treated prostate epithelial cells. The selective knockdown of ANO1 suppressed DHT-induced cell proliferation. Surprisingly, we found that there were three androgen-response elements in the ANO1 promoter region, which were relevant for the DHT-dependent induction of ANO1. Intraprostate treatment of Ano1 siRNA inhibited the prostate enlargement in vivo. Thus, ANO1 appears essential for the development of prostate hyperplasia and becomes a useful target for treating BPH. Benign prostatic hyperplasia (BPH) is characterized by an enlargement of the prostate, causing lower urinary tract symptoms in elderly men worldwide. However, the molecular mechanism underlying the pathogenesis of BPH is unclear. Anoctamin1 (ANO1) encodes a Ca2+-activated chloride channel (CaCC) that mediates various physiological functions. Here, we demonstrate that it is essential for testosterone-induced BPH. ANO1 was highly amplified in dihydrotestosterone (DHT)-treated prostate epithelial cells, whereas the selective knockdown of ANO1 inhibited DHT-induced cell proliferation. Three androgen-response elements were found in the ANO1 promoter region, which is relevant for the DHT-dependent induction of ANO1. Administration of the ANO1 blocker or Ano1 small interfering RNA, inhibited prostate enlargement and reduced histological abnormalities in vivo. We therefore concluded that ANO1 is essential for the development of prostate hyperplasia and is a potential target for the treatment of BPH.


Journal of Nutritional Biochemistry | 2013

20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginseng, inhibits colon cancer growth by targeting TRPC channel-mediated calcium influx

Jeong Ah Hwang; Mun Kyung Hwang; Yongwoo Jang; Eun Jung Lee; Jong Eun Kim; Mi Hyun Oh; Dong Joo Shin; Semi Lim; Geun og Ji; Uhtaek Oh; Ann M. Bode; Zigang Dong; Ki Won Lee; Hyong Joo Lee

Abnormal regulation of Ca(2+) mediates tumorigenesis and Ca(2+) channels are reportedly deregulated in cancers, indicating that regulating Ca(2+) signaling in cancer cells is considered as a promising strategy to treat cancer. However, little is known regarding the mechanism by which Ca(2+) affects cancer cell death. Here, we show that 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol (20-GPPD), a metabolite of ginseng saponin, causes apoptosis of colon cancer cells through the induction of cytoplasmic Ca(2+). 20-GPPD decreased cell viability, increased annexin V-positive early apoptosis and induced sub-G1 accumulation and nuclear condensation of CT-26 murine colon cancer cells. Although 20-GPPD-induced activation of AMP-activated protein kinase (AMPK) played a key role in the apoptotic death of CT-26 cells, LKB1, a well-known upstream kinase of AMPK, was not involved in this activation. To identify the upstream target of 20-GPPD for activating AMPK, we examined the effect of Ca(2+) on apoptosis of CT-26 cells. A calcium chelator recovered 20-GPPD-induced AMPK phosphorylation and CT-26 cell death. Confocal microscopy showed that 20-GPPD increased Ca(2+) entry into CT-26 cells, whereas a transient receptor potential canonical (TRPC) blocker suppressed Ca(2+) entry. When cells were treated with a TRPC blocker plus an endoplasmic reticulum (ER) calcium blocker, 20-GPPD-induced calcium influx was completely inhibited, suggesting that the ER calcium store, as well as TRPC, was involved. In vivo mouse CT-26 allografts showed that 20-GPPD significantly suppressed tumor growth, volume and weight in a dose-dependent manner. Collectively, 20-GPPD exerts potent anticarcinogenic effects on colon carcinogenesis by increasing Ca(2+) influx, mainly through TRPC channels, and by targeting AMPK.


Pflügers Archiv: European Journal of Physiology | 2014

TRPM2 mediates the lysophosphatidic acid-induced neurite retraction in the developing brain.

Yongwoo Jang; Mi Hyun Lee; Jesun Lee; Jooyoung Jung; Sung Hoon Lee; Dong-Jin Yang; Byung Woo Kim; Hyeon Son; Boyoon Lee; Sunghoe Chang; Yasuo Mori; Uhtaek Oh

Intracellular Ca2+ signal is a key regulator of axonal growth during brain development. As transient receptor potential (TRP) channels are permeable to Ca2+ and mediate numerous brain functions, it is conceivable that many TRP channels would regulate neuronal differentiation. We therefore screened TRP channels that are involved in the regulation of neurite growth. Among the TRP channels, the Trpm2 level was inversely associated with neurite growth. TRPM2 was highly expressed in embryonic brain. Pharmacological perturbation or knockdown of TRPM2 markedly increased the axonal growth, whereas its overexpression inhibited the axonal growth. Addition of ADP ribose, an endogenous activator of TRPM2, to PC12 cells significantly repressed the axonal growth. TRPM2 was actively involved in the neuronal retraction induced by cerebrospinal fluid-rich lysophosphatidic acid (LPA). More importantly, neurons isolated from the brain of Trpm2-deficient mice have significantly longer neurites with a greater number of spines than those obtained from the brain of wild-type mice. Therefore, we conclude that TRPM2 mediates the LPA-induced suppression of axonal growth, which provides a long-sought mechanism underlying the effect of LPA on neuronal development.

Collaboration


Dive into the Yongwoo Jang's collaboration.

Top Co-Authors

Avatar

Uhtaek Oh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Young Duk Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Byeongjun Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jooyoung Jung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hawon Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Jin Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jesun Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jungwon Wee

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge