Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongxia Jia is active.

Publication


Featured researches published by Yongxia Jia.


Journal of Hazardous Materials | 2010

Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.

Xiaochuan Zhang; Shirong Zhang; Xiaoxun Xu; Ting Li; Guoshu Gong; Yongxia Jia; Yun Li; Liangji Deng

Because of its toxicity to animals and humans, cadmium (Cd) is an environmentally important heavy metal. Consequently, researchers are interested in using hyperaccumulator and accumulator plants to decontaminate Cd polluted soils. To investigate Cd tolerance, uptake and accumulation by Amaranthus hybridus L., Cd concentration gradients were applied to a soil (at rates of 0, 30, 60, 90, 120, 150 and 180 mg kg(-1)) and hydroponics solutions (at rates of 0, 5, 10, 15, 20, 30, and 40 mg L(-1)) following a field survey. A. hybridus grew normally at added Cd concentrations < or =90 mg kg(-1) and < or =20 mg L(-1) in the soil culture and in the hydroponics solutions, respectively. In the hydroponics solutions, peroxidase activity showed a quadratic relationship and catalase activity changed irregularly with increasing Cd concentrations. The highest Cd concentration and accumulation in shoots were 241.56 mg kg(-1) and 1006.95 microg pot(-1) in the soil culture, and 354.56 mg kg(-1) and 668.42 microg pot(-1) in the hydroponics experiment. Bioconcentration factors in soil culture and hydroponics solutions were 0.58-1.22 and 5.18-17.55, and translocation factors were 0.64-1.50 and 0.33-0.92, respectively. A. hybridus has potential phytoremediation capability in Cd polluted soils.


Chemosphere | 2013

Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils.

Jichuan Lan; Shirong Zhang; Haichuan Lin; Ting Li; Xiaoxun Xu; Yun Li; Yongxia Jia; Guoshu Gong

Chelant assisted phytoextraction has been proposed to enhance the efficiency of remediation. This study evaluated the effects of biodegradable ethylene diamine tetraacetate (EDDS), nitrilotriacetic (NTA) and anionic polyacrylamide (APAM) on the tolerance and uptake of Siegesbeckia orientalis L. at 10 and 100 mg kg(-1) Cd-contaminated soils. On the 80th and 90th days of transplanting, pots were treated with EDDS and NTA at 0 (control), 1 and 2 mmol kg(-1) soils, and APAM at 0 (control), 0.07 and 0.14 g kg(-1). Generally, the root and shoot biomass of S. orientalis in all treatments reduced not significantly compared with the control, and the activities of peroxidase and catalase in leaves generally increased by the application of chelants (P<0.05). The concentrations of Cd in the shoots were increased significantly by addition of all chelants. As a result, the Cd accumulation of S. orientalis under treatments with higher dosages of the three chelants on the 80th day were 1.40-2.10-fold and 1.12-1.25-fold compared to control at 10 and 100 mg kg(-1) Cd, respectively. Under the addition of 2 mmol kg(-1) NTA on the 80th day, the highest metal extraction ratio reached 1.2% and 0.4% at 10 and 100 mg kg(-1) Cd soils, respectively. Therefore, the applications of EDDS, NTA and APAM may provide more efficient choices in chemical-enhanced phytoextraction.


Science of The Total Environment | 2016

Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility

Guiyin Wang; Shirong Zhang; Xiaoxun Xu; Qinmei Zhong; Chuer Zhang; Yongxia Jia; Ting Li; Ouping Deng; Yun Li

Soil washing, an emerging method for treating soils contaminated by heavy metals, requires an evaluation of its efficiency in simultaneously removing different metals, the quality of the soil following remediation, and the reusability of the recycled washing agent. In this study, we employed N,N-bis (carboxymethyl)-l-glutamic acid (GLDA), a novel and readily biodegradable chelator to remove Cd, Pb, and Zn from polluted soils. We investigated the influence of washing conditions, including GLDA concentration, pH, and contact time on their removal efficiencies. The single factor experiments showed that Cd, Pb, and Zn removal efficiencies reached 70.62, 74.45, and 34.43% in mine soil at a GLDA concentration of 75mM, a pH of 4.0, and a contact time of 60min, and in polluted farmland soil, removal efficiencies were 69.12, 78.30, and 39.50%, respectively. We then employed response surface methodology to optimize the washing parameters. The optimization process showed that the removal efficiencies were 69.50, 88.09, and 40.45% in mine soil and 71.34, 81.02, and 50.95% in polluted farmland soil for Cd, Pb, and Zn, respectively. Moreover, the overall highly effective removal of Cd and Pb was connected mainly to their highly effective removal from the water-soluble, exchangeable, and carbonate fractions. GLDA-washing eliminated the same amount of metals as EDTA-washing, while simultaneously retaining most of the soil nutrients. Removal efficiencies of recycled GLDA were no >5% lower than those of the fresh GLDA. Therefore, GLDA could potentially be used for the rehabilitation of soil contaminated by heavy metals.


Chemosphere | 2014

Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

Yichang Shen; Shirong Zhang; Sen Li; Xiaoxun Xu; Yongxia Jia; Guoshu Gong

Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis.


Science of The Total Environment | 2016

Spatial variability of soil nitrogen in a hilly valley: Multiscale patterns and affecting factors.

Shirong Zhang; Chunlan Xia; Ting Li; Chungui Wu; Ouping Deng; Qinmei Zhong; Xiaoxun Xu; Yun Li; Yongxia Jia

Estimating the spatial distribution of soil nitrogen at different scales is crucial for improving soil nitrogen use efficiency and controlling nitrogen pollution. We evaluated the spatial variability of soil total nitrogen (TN) and available nitrogen (AN) in the Fujiang River Valley, a typical hilly region composed of low, medium and high hills in the central Sichuan Basin, China. We considered the two N forms at single hill, landscape and valley scales using a combined method of classical statistics, geostatistics and a geographic information system. The spatial patterns and grading areas of soil TN and AN were different among hill types and different scales. The percentages of higher grades of the two nitrogen forms decreased from low, medium to high hills. Hill type was a major factor determining the spatial variability of the two nitrogen forms across multiple scales in the valley. The main effects of general linear models indicated that the key affecting factors of soil TN and AN were hill type and fertilization at the single hill scale, hill type and soil type at the landscape scale, and hill type, slope position, parent material, soil type, land use and fertilization at the valley scale. Thus, the effects of these key factors on the two soil nitrogen forms became more significant with upscaling.


Science of The Total Environment | 2018

Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties

Guiyin Wang; Shirong Zhang; Qinmei Zhong; Xiaoxun Xu; Ting Li; Yongxia Jia; Yanzong Zhang; Willie J.G.M. Peijnenburg; Martina G. Vijver

Soil washing with chelators is a promising and efficient method of remediating metals-contaminated soils. However, the toxicity of residual metals and the effects on soil microbial properties have remained largely unknown after washing. In this study, we employed four biodegradable chelators for removal of metals from contaminated soils: iminodisuccinic acid (ISA), glutamate-N,N-diacetic acid (GLDA), glucomonocarbonic acid (GCA), and polyaspartic acid (PASP). The maximum removal efficiencies for Cd, Pb, and Zn of 85, 55, and 64% and 45, 53, and 32% were achieved from farmland soil and mine soil using biodegradable chelators, respectively. It was found that the capacity of ISA and GLDA to reduce the labile fraction of Cd, Pb, and Zn was similar to that of the conventional non-biodegradable chelator ethylenediaminetetraacetic acid (EDTA). The leachability, mobility, and bioaccessibility of residual metals after washing decreased notably in comparison to the original soils, thus mitigating the estimated environmental and human health risks. Soil β-glucosidase activity, urease activity, acid phosphatase activity, microbial biomass nitrogen, and microbial biomass phosphorus decreased in the treated soils. However, compared with EDTA treatment, soil enzyme activities distinctly increased by 5-94% and overall microbial biomass slightly improved in the remediated soils, which would facilitate reuse of the washed soils. Based on soil toxicity tests that employed wheat seed germination as the endpoint of assessment, the washed soils exhibited only slight effects especially after ISA and GLDA treatments, following high-efficiency metal removal. Hence, ISA and GLDA appear to possess the greatest potential to rehabilitate polluted soils with limited toxicity remaining.


International Journal of Phytoremediation | 2018

Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in Siegesbeckia orientalis L

Xiaoxun Xu; Shirong Zhang; Junren Xian; Zhanbiao Yang; Zhang Cheng; Ting Li; Yongxia Jia; Yulin Pu; Yun Li

ABSTRACT Siegesbeckia orientalis L. is a promising species for cadmium (Cd) phytoextraction with large biomass and fast growth rate, while little information about their intracellular mechanisms involved in Cd tolerance and detoxification has been explored. A soil pot experiment with total target Cd concentrations of 0, 10, 50, 100, and 150 mg kg−1 were designed to investigate the subcellular distribution, chemical forms and thiol synthesis characteristics of Cd in S. orientalis. More than 90% of Cd was bound to the soluble fractions (48.4–76.5%) and cell walls (19.9–46.3%). Increasing soil Cd concentrations enhanced Cd sequestration into the cell walls. Most of the Cd (69.8–82.7%) in the plant organ was mainly in the forms of pectate and protein integrated Cd and undissolved Cd phosphate, while a minor portion (6.8–20.9%) was in the forms of the inorganic Cd and the water soluble Cd. Nonprotein thiols and phytochelatins significantly increased with increasing soil Cd treatment levels, while glutathione concentrations had no obvious change trends. Therefore, intracellular detoxification mechanisms of Cd in S. orientalis mainly rely on formation of less toxic Cd chemical forms, store of a large amount of Cd in cell wall and synthesis of thiol compounds.


Ecotoxicology and Environmental Safety | 2018

Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids

Yaru Cao; Shirong Zhang; Qinmei Zhong; Guiyin Wang; Xiaoxun Xu; Ting Li; Lilin Wang; Yongxia Jia; Yun Li

Soil washing with natural chelators to remediate metal-contaminated soils has been gained attention by researchers. However, the abilities of the chelators to remediate the multiple metal polluted soils are less effective. This study employed zero-valent iron nanoparticle (nZVI) to enhance the removal efficiencies of citric (CA), tartaric (TA) and oxalic acids (OA), and evaluate their feasibility. Results showed that metal removal efficiencies increased with the increasing concentration of nZVI and soil-liquid ratio, decreased with the increasing solution pH. The kinetic simulation indicated that pseudo-first-order and pseudo-second-order models could be used for describing the washing processes. Additionally, metal removals were significantly improved by addition of nZVI (p < 0.05). The highest enhancements of soil Cd, Pb and Zn removals under solution pH of 4.0, soil-liquid ratio of 1:20 and washing time of 120 min reached 12.83% (OA- nZVI), 24.92% (CA-nZVI) and 11.64% (OA- nZVI) for mine soil, and 19.24% (TA- nZVI), 18.16% (CA-nZVI) and 8.93% (OA- nZVI) for farmland soil, respectively. After soil washing, the exchangeable forms and the environmental risks of residual metals were markedly diminished in soils. Therefore, the combinations of the organic acids and nZVI are the feasible practices to repair the soils contaminated by heavy metals.


Ecological Engineering | 2013

Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L.

Shirong Zhang; Haichuan Lin; Liangji Deng; Guoshu Gong; Yongxia Jia; Xiaoxun Xu; Ting Li; Yun Li; Hui Chen


Soil & Tillage Research | 2016

Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain

Sen Li; Shirong Zhang; Yulin Pu; Ting Li; Xiaoxun Xu; Yongxia Jia; Ouping Deng; Guoshu Gong

Collaboration


Dive into the Yongxia Jia's collaboration.

Top Co-Authors

Avatar

Shirong Zhang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ting Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yun Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoxun Xu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guoshu Gong

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yulin Pu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qinmei Zhong

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunlan Xia

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guiyin Wang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haichuan Lin

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge