Yongxin Song
Dalian Maritime University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongxin Song.
Sensors | 2013
Junsheng Wang; Jinyang Sun; Yongxin Song; Yongyi Xu; Xinxiang Pan; Yeqing Sun; Dongqing Li
Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis.
Electrophoresis | 2013
Yongxin Song; Ran Peng; Junsheng Wang; Xinxiang Pan; Yeqing Sun; Dongqing Li
This paper reports a lab‐on‐a‐chip device that can automatically detect and sort particles based on their size differences with a high resolution. The PDMS‐glass microfluidic chip is made by soft‐lithography technique. A differential resistive pulse sensor is employed to electrically detect the sizes of the particles in EOF generated by applying DC voltages across channels. The detected resistive pulse sensor signals, whose amplitudes are proportional to particles’ sizes, will automatically trigger the sorting process that is controlled by applying a voltage pulse (36 V) whenever a target particle is detected. This method was applied to automatically detect and sort polystyrene particles and microalgae in aqueous solutions. Sorting 5 μm polymer particle from a mixture of 4‐ and 5‐μm polystyrene particles in aqueous solution, i.e. 1 μm sorting resolution, was demonstrated. The device described in this paper is simple, automatic, and label‐free with high sorting resolution. It has wide applications in sample pretreatment and target particles detection.
Physics of Fluids | 2017
Rama Aravind Prabhakaran; Yilong Zhou; Cunlu Zhao; Guoqing Hu; Yongxin Song; Junsheng Wang; Chun Yang; Xiangchun Xuan
Electrokinetic flow, due to a nearly plug-like velocity profile, is the preferred mode for transport of fluids (by electroosmosis) and species (by electrophoresis if charged) in microfluidic devices. Thus far there have been numerous studies on electrokinetic flow within a variety of microchannel structures. However, the fluid and species behaviors at the interface of the inlet reservoir (i.e., the well that supplies the fluid and species) and microchannel are still largely unexplored. This work presents a fundamental investigation of the induced charge effects on electrokinetic entry flow due to the polarization of dielectric corners at the inlet reservoir-microchannel junction. We use small tracing particles suspended in a low ionic concentration fluid to visualize the electrokinetic flow pattern in the absence of Joule heating effects. Particles are found to get trapped and concentrated inside a pair of counter-rotating fluid circulations near the corners of the channel entrance. We also develop a dept...
Biomicrofluidics | 2015
Yilong Zhou; Dhileep Thanjavur Kumar; Xinyu Lu; Akshay Kale; John DuBose; Yongxin Song; Junsheng Wang; Dongqing Li; Xiangchun Xuan
Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.
Electrophoresis | 2017
Rama Aravind Prabhakaran; Yilong Zhou; Saurin Patel; Akshay Kale; Yongxin Song; Guoqing Hu; Xiangchun Xuan
Electroosmotic flow is the transport method of choice in microfluidic devices over traditional pressure‐driven flow. To date, however, studies on electroosmotic flow have been almost entirely limited to inside microchannels. This work presents the first experimental study of Joule heating effects on electroosmotic fluid entry from the inlet reservoir (i.e., the well that supplies fluids and samples) to the microchannel in a polymer‐based microfluidic chip. Electrothermal fluid circulations are observed at the reservoir‐microchannel junction, which grow in size and strength with the increasing alternating current to direct current voltage ratio. Moreover, a 2D depth‐averaged numerical model is developed to understand the effects of Joule heating on fluid temperature and flow fields in electrokinetic microfluidic chips. This model overcomes the problems encountered in previous unrealistic 2D and costly 3D models, and is able to predict the observed electroosmotic entry flow patterns with a good agreement.
Biomicrofluidics | 2016
Di Li; Xinyu Lu; Yongxin Song; Junsheng Wang; Dongqing Li; Xiangchun Xuan
Particle separation has found practical applications in many areas from industry to academia. Current electrokinetic particle separation techniques primarily rely on dielectrophoresis, where the electric field gradients are generated by either active microelectrodes or inert micro-insulators. We develop herein a new type of electrokinetic method to continuously separate particles in a bifurcating microchannel. This sheath-free separation makes use of the inherent wall-induced electrical lift to focus particles towards the centerline of the main-branch and then deflect them to size-dependent flow paths in each side-branch. A theoretical model is also developed to understand such a size-based separation, which simulates the experimental observations with a good agreement. This electric field-driven sheathless separation can potentially be operated in a parallel or cascade mode to increase the particle throughput or resolution.
Electrophoresis | 2015
Yongxin Song; Jiandong Yang; Xinxiang Pan; Dongqing Li
High‐throughput particle counting by a differential resistive pulse sensing method in a microfluidic chip is presented in this paper. A sensitive differential microfluidic sensor with multiple detecting channels and one common reference channel was devised. To test the particle counting performance of this chip, an experimental system which consists of the microfluidic chip, electric resistors, an amplification circuit, a LabView based data acquisition device was developed. The influence of the common reference channel on the S/N of particle detection was investigated. The relationship between the hydraulic pressure drop applied across the detecting channel and the counting throughput was experimentally obtained. The experimental results show that the reference channel designed in this work can improve the S/N by ten times, thus enabling sensitive high‐throughput particle counting. Because of the greatly improved S/N, the sensing gate with a size of 25 × 50 × 10 μm (W × L × H) in our chips can detect and count particles larger than 1.5 μm in diameter. The counting throughput increases with the increase in the flowing velocity of the sample solution. An average throughput of 7140/min under a flow rate of 10 μL/min was achieved. Comparing with other methods, the structure of the chip and particle detecting mechanism reported in this paper is simple and sensitive, and does not have the crosstalking problem. Counting throughput can be adjusted simply by changing the number of the detecting channels.
Electrophoresis | 2015
Jiachen Wuzhang; Yongxin Song; Runzhe Sun; Xinxiang Pan; Dongqing Li
Electrophoretic mobility of oil droplets of micron sizes in PBS and ionic surfactant solutions was measured in this paper. The experimental results show that, in addition to the applied electric field, the speed and the direction of electrophoretic motion of oil droplets depend on the surfactant concentration and on if the droplet is in negatively charged SDS solutions or in positively charged hexadecyltrimethylammonium bromide (CTAB) solutions. The absolute value of the electrophoretic mobility increases with increased surfactant concentration before the surfactant concentration reaches to the CMC. It was also found that there are two vortices around the oil droplet under the applied electric field. The size of the vortices changes with the surfactant and with the electric field. The vortices around the droplet directly affect the drag of the flow field to the droplet motion and should be considered in the studies of electrophoretic mobility of oil droplets. The existence of the vortices will also influence the determination and the interpretation of the zeta potential of the oil droplets based on the measured mobility data.
Scientific Reports | 2016
Junsheng Wang; Zhiqiang Fan; Yile Zhao; Younan Song; Hui Chu; Wendong Song; Yongxin Song; Xinxiang Pan; Yeqing Sun; Dongqing Li
Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.
Electrophoresis | 2016
Yongxin Song; Chengfa Wang; Mengqi Li; Xinxiang Pan; Dongqing Li
A novel method of sheathless particle focusing by induced charge electrokinetic flow in a microchannel is presented in this paper. By placing a pair of metal plates on the opposite walls of the channel and applying an electrical field, particle focusing is achieved due to the two pairs of vortex that constrain the flow of the particle solution. As an example, the trajectories of particles under different electrical fields with only one metal plate on one side channel wall were numerically simulated and experimentally validated. Other flow focusing effects, such as the focused width ratio (focused width/channel width) and length ratio (focused length/half‐length of metal plate) of the sample solution, were also numerically studied. The results show that the particle firstly passes through the gaps between the upstream vortices and the channel walls. Afterwards, the particle is focused to pass through the gap between the two downstream vortices that determine the focused particle position. Numerical simulations show that the focused particle stream becomes thin with the increases in the applied electrical field and the length of the metal plates. As regards to the focused length ratio of the focused stream, however, it slightly increases with the increase in the applied electrical field and almost keeps constant with the increase in the length of the metal plate. The size of the focused sample solution, therefore, can be easily adjusted by controlling the applied electrical field and the sizes of the metal plates.